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The local fractional variational iteration method is applied to a modified Fisher’s 
equation defined on Cantor sets with the fractal conditions. The solution process 
is simple, and the accuracy of the approximate solution is high. The method pro-
vides an unrivaled tool for local differential equations.  
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Introduction  

The Fisher equation is a 1-D non-linear parabolic PDE proposed by Fisher in 1937 

[1]. This is a reaction-diffusion equation, which is used to test the fluctuation proliferation of 

beneficial quality genes in a population. It can also be called the dynamic dominance rate of a 

favorable gene to show the reproduction of virus mutants in infinite habitats. It is one of the 

simplest reaction-diffusion equations. Therefore, the study of this kind of PDE has become a 

related research field. The Fisher equation is now widely used in various biological and chem-

ical processes and engineering, for example, gene propagation [1-3], combustion [4], the au-

tocatalytic chemical reaction [5], and tissue engineering [6]. Rehman et al. [7] used a numeri-

cal technique called the variational iteration method to solve the Fisher’s equation with great 

success, showing the variational iteration method is an incomparable technique for non-linear 

equations; the method was first proposed by Ji-Huan He in the 1990’s [8, 9]. Maha [10] also 

employed the variational iteration method to the fractional Fisher equation and fractional Na-

vier-Stokes equation, showing the method is also a powerful and effective tool to fractional 

differential equations, and now the method becomes a matured tool for various non-linear 

problems, for example, He [11] used the variational iteration method to study the stability of a 

heat conduction equation. Nadeem and He [12] coupled the variational iteration method with 

the Laplace transform to solve population dynamics. He, et al. [13] obtained an analytical so-

lution for the MEMS oscillator. The variational iteration method is extremely effective for 

fractional calculus [14-20].  
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The local fractional calculus [21] can be used to describe non-differentiable prob-

lems, and the local fractional variational iteration method (LFVIM) [14] is an extension of the 

variational iteration method [7, 8] to the local fractional differential equations.  

Using the fractional complex transform [22-25], we can transform the fractional 

Fisher’s equation into its local fractional partner on Cantor sets. The fractional complex trans-

form can be physically explained by the two-scale fractal theory [26-28].  

Mathematics tools 

In this section, we recall and review briefly basic definitions of local fractional 
derivatives (LFD) and local fractional integral [21]. Some basic operations of LFD on 
fractal space are presented as follows [21]. 

Definition 1. Assume the relation below exists: 

 0( ) ( )x x      (1) 
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Definition 3. In the fractional space, the Mittag-Leffler function is given by: 
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We recall the following properties: 

 ( ) ( )= [( ) ]E x E y E x y  
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Definition 4. A partition of the interval [ , ]a b  is denoted as 1( , ),j jt t   
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local fractional integral of ( )x in the interval [ , ]a b  is given by:  
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Definition 5. The local fractional partial derivative operator of ( , )x t of order 

( (0,1])  with respect to t at the point 0( , )x t is defined [21]:  
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where  
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In view of eq. (7), the local fractional partial derivative operator of ( , )x t of order 

( (0,1])k   is given by [21]:  
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Fractal model of the local fractional  

Fisher’s equation on Cantor sets 

In this section, the local fractional Fisher’s equation on Cantor sets is derived 
with the fractional complex transform [ 22-25] via the LFD [21].  

Considering Fisher’s equation of given form [1]: 
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subject to the initial condition: 
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Using the fractional complex transform method [22-25] via local fractional deriva-

tives, we can obtain: 
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Analysis of the local fractional  

variational iteration method 

In this section, we present the main steps of the local fractional variational iteration 

method [16-20]. The method gives the solution in a local fractional series form that converges 

to the closed-form solution if an exact solution exists.  

We consider a general non-linear local fractional partial differential equation:  

 ( , ) ( , ) ( , ), 0, , 0 1L x t N x t f x t t x           (13) 

where L denotes linear LFD operator, N – the non-linear local fractional operator, and 

( , )f x t  – the non-differentiable source term. 
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Local fractional variational iteration algorithm (LFVIA) can be written [16-20]: 
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where 
 is a fractal Lagrange multiplier, which can be identified by the fractal variational 

theory [28-37]. 

Here, according to the rule of the local fractional variational iteration method, we 

can construct a correction functional [7, 8]:  
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where n  is considered as a restricted local fractional variation, that is, =0n
   [7, 8]. 

Here,   is the local fractional variation signal. 

We consider a local fractional variational principle [28-37]: 
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where 
( ) ( )t  is taken in local fractional differential operator and .t    

Following eq. (16), we have the stationary condition, which is given by [28-37]: 
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Equation (17) is useful for the identification of the Lagrange multiplier in the local 

fractional variational iteration method. 

After the fractal Lagrange multipliers have been determined, the successive approx-

imations ( 1, 0n n   ) of the solution will be readily obtained by using any selective fractal 

function. Therefore, we get the solution of the equation: 

 lim n
n

 
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Here, this technology is called the local fractional variational iteration method  

[16-20].  

Approximate analytical solutions of  

fractal Fisher’s equation  

In this section, fractal Fisher’s eq. (12) is discussed by using local fractional varia-

tional iteration method. 

Start with the 0th approximation: 
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We can structure a correction local fractional functional: 
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The stationary conditions of eq. (20) are presented:  

 
( )( ) 0     (21) 

and 

 1 0t


    (22) 

Therefore, it is clear that the fractal Lagrange multiplier can be determined simply: 
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From eq. (20), LFVIA for fractal Fisher’s eq. (12) are structured:  
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Following eqs. (19) and (24), the formulas of non-differentiable terms are:  
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Therefore, the approximation solution is: 
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Conclusion 

In this paper, the Fisher’s equation within the local fractional differential operator 

had been analyzed coupling LFCT via LFD and LFVIM. The non-differentiable solutions for 

fractal the Fisher’s equation were obtained. This method is a powerful mathematical tool for 

solving local fractional non-linear partial differential equations. 
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