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The well-known Emden-Fowler equation is widely used to model many problems 
arising in thermal science, physics, and astrophysics. Although there are some 
analytical solutions available, the high requirement for mathematical knowledge 
has hindered researchers from direct applications. This paper suggests a 
straightforward method with a simple solution process and highly accurate re-
sults. Two examples are given to verify the accuracy and reliability of the pro-
posed method. 
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Introduction 

Non-linear differential equations appear in thermal science, physics, and engineer-

ing. Without them, progress in science and technology is impossible. The differential models 

for engineering applications should be simple; the simpler, the better [1]. A simple mathemat-

ical treatment has revealed the mechanism of a long-lost technology called Fangzhu, an an-

cient technology to collect water from the air [2]. A simple mathematical formulation can in-

sight into the frequency-amplitude property of a complex vibration system [3-5] or instability 

property [6-8], a simple bond stress-slip relationship can be used for prediction of the me-

chanical property of a 3-D printed concrete [9]. The variational theory [10-15] is a useful 

mathematical tool for analysis of a differential equation. Mathematics itself has been develop-

ing, and some traditional problems are more effectively solved by new mathematics concepts, 

for example, the local fractional calculus [16-21]. 

The well-known Emden-Fowler equation (EFE) is a second-order non-linear ODE 

and is widely used to model many facts in thermal science, physical sciences, and astrophys-

ics [22, 23]. 

The general form of EFE is given as: 

 ( ) ( ) ( ), 0
a

y y bf x g y s x a
x

      (1) 

with the following initial conditions (IC): 

 (0) , (0)y m y n   
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* Corresponding author, e-mail: konka05@163.com 

file:///C:/Users/Administrator/AppData/Local/Youdao/Dict/Application/6.3.69.4001/resultui/frame/javascript:void(0);


Liang, Y.-H., et al.: Taylor Series Solution for the Non-Linear Emden-Fowler Equations … 
2694 THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2693-2697 

where a, b, m, and n are constants, f(x) and s(x) represent functions of x and g(y) is the func-

tion of y.  

Different forms of the g(y) and s(x) lead to different phenomena in mathemati-
cal physics, and there has been a substantial amount of work done on the solution of the 
EFE [22-24]. In this paper, the Taylor series method [25, 26] is adopted to solve eq. (1). 

Taylor series solution for the EFE 

Taylor series plays an essential role in approximate calculation and is accessible to 

all students and engineers [25, 26]. To better illustrate our approach, we rewrite eq. (1) in the 

form: 

 ( ) ( ) ( )xy ay bxf x g y xs x     (2) 

Differentiating the eq. (1) with respect to x yields: 

 ( ) ( ) [ ( ) ( ) ( ) ( ) ] ( ) ( )y xy bf x g y bx f x g y f x g y y s x xs x             (3) 

Let 0x   in eq. (3), we obtain: 

 (0) ( ) (0)y bf g m s    (4) 

which leads to: 

 (0) (0) (0) ( )y s bf g m    (5) 

In the same manner, we have the following expression by differentiating eq. (3) with 

respect to x and letting x = 0:  

 (0) (0) (0) ( ) (0) ( )y s bf g n bf g n n       (6) 

Similarly, we can get 
(4) (5) (6)(0), (0), (0)y y y ... and so on.  

Then the approximate analytical solution of the y(x) in the form of Taylor series can 

be obtained: 

 
(4) (5) (6)

2 3 4 5 6(0) (0) (0) (0) (0)
( ) (0) (0) ....

2 6 24 120 720

y y y y y
y x y y x x x x x x

 
          (7) 

In order to obtain higher accuracy, it is only necessary to increase the order of the 

Taylor series. Next, we use two examples to verify the correctness and reliability of the pro-

posed method. 

Example 1. Considering the EFE takes form: 

 5 4 28
44 30y y xy x x x x

x
         (8) 

There is the following IC: 

 (0) 0,y  (0) 0y   

The exact solution of Example 1 is [24]: 

 
3 4( )y x x x    (9)  
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Equation (8) can be converted into: 

 
2 6 5 3 28 44 30xy y x y x x x x        (10) 

Applying our proposed method, we can get: 

 
(4) (5) (6) (7)(0) 0, (0) 6, (0) 24, (0) 0, (0) 0, (0) 0y y y y y y         

The solution of eq. (8) with 7th Taylor series can be written: 

(4) (5)
2 3 4 5(0) (0) (0) (0)

( ) (0) (0)
2 6 24 120

y y y y
y x y y x x x x x

 
        

 
(6) (7)

6 7 3 4(0) (0)

720 5040

y y
x x x x      (11) 

This is the exact solution. 

Example 2. In this case, we try to solve the following EFE: 

 2
5

e 2e 0

y

yy y
x

       (12) 

with the IC: 

 (0) 0, (0) 0y y     

The exact solution of eq. (12) is given [24]: 

 21
( ) 2ln 1

8
y x x

 
   

 
 (13) 

We rewrite eq. (12): 

 25 2 0

y

yxy y xe xe      

Using the method we proposed, there is: 

 (4) (5) (6)1 3 15
(0) , (0) 0, (0) , (0) 0, (0)

2 8 16
y y y y y         

Then we obtain the solution of eq. (12) with 6th order Taylor series: 

(4)
2 3 4(0) (0) (0)

( ) (0) (0)
2 6 24

y y y
y x y y x x x x

 
       

 
(5) (6)

5 6 2 4 6(0) (0) 1 1 1

120 720 4 64 768

y y
x x x x x       (14) 

Comparing the approximate solution and exact solution in fig. 1 reveals that our pre-

sented method is efficient and reliable.  
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Discussion and conclusion 

In this paper, a simple but effective ap-

proximate solution of the EFE is presented. The 

whole solution process is extremely easy. The 

proposed method is expected to be helpful to 

the solution of EFE arising in astrophysics and 

space science. 
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