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In order to solve the local fractional differential equations, we couple the frac-
tional residual method with the Adomian decomposition method via the local frac-
tional calculus operator. Several examples are given to illustrate the solution pro-
cess and the reliability of the method. 
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Introduction 

It is an obvious fact that fractional differential equations can describe non-differentia-

ble problems much better than classic differential equations [1-8]. Now the fractional calculus 

has been developing rapidly, and it has been widely applied to physics, mathematics, engineer-

ing, and many other fields [1-5]. However, there are still many problems which are needed to be 

solved urgently. The main barrier is the definition of the fractional derivative. There are too 

many definitions, and new definitions always appear in literature, however, most fractional de-

rivatives are almost incompatible, and the physical understanding of the fractional models is 

unclear. The aforementioned issues are worthy of further study in the future. 

The local fractional derivative [9, 10] is defined in Cantor fractal space and can model 

many practical problems. Fractal theory is also a powerful tool to the analysis of biologic and 

material phenomena [11, 12]. How to solve such problems has become a hot topic in mathematics, 

and some effective methods have appeared in literature, e.g., the variational iteration method [13-

15], the fractional residual method [16], the homotopy perturbation method [17-20], the local 

fractional Fourier series method [21-23], The Yang Laplace transform-DJ iteration method [24], 

He-Laplace method [25, 26], the fractional complex transform (two-scale transform)  

[27, 28], the coupled method of the variational iteration and reduced differential transform method 

[29], the differential transform approach [30], the asymptotic perturbation method [31], the cou-

pled method of the Sumudu transform and the variational iteration method [32], the direct alge-

braic method [33, 34], the exp-function method [35], the variational approach [36-39], the Fourier 

spectral method [40] and the reproducing kernel method [41]. 

In this paper, we attempt to solve the local differential equation by coupling the frac-

tional residual method [16] with the Adomian decomposition method [42] via the local differ-

ential equations.  

–––––––––––––– 
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Basic definitions of local fractional calculus  

In this section, we introduce some mathematical preliminaries of the local fractional 

calculus theory in fractal space for our subsequent development [6]. 

Definition 1. In fractal space, let ( ) ( , ),u t C a b  the local fractional derivative of u(t) 

of order  at 0t t  is given by [6, 9, 10]:  
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where 

 0 0[ ( ) ( )] (1 ) [ ( ) ( )]u t u t u t u t         

Definition 2. [6] let ( ) ( , )u t C a b , the local fractional integral of (t) of order  in 

the interval [a, b] is defined by [6, 9, 10]: 
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where 1j j jt t t   , 1 2max{ , , ,...}jt t t t     and 1( , ),j jt t   0,..., 1j N  , 0 , ,Nt a t b   

is a partition of the interval [a, b].  

The fractional residual method coupled with  

the Adomian decomposition method 

In this section, we shall present the iterative process of the fractional residual method 

[16] coupled with the Adomian decomposition method [42] to search for the exact solution of 

some local fractional differential equations. 

Firstly, we discuss the following local fractional differential equation on the fractal 

set, and its form is given: 

 ( , ) ( , ) ( , ) ( , )Lu x t Ru x t Pu x t g x t    (3) 

where L, P are all linear operators, R is a non-linear operator and g(x, t) is an inhomogeneous 

term. 

In order to solve eq. (3), we apply the local fractional reverse operator 
1( )L   on both 

sides of eq. (3), then we obtain: 

 
1( , ) ( , ) [ ( , ) ( , ) ( , )]u x t u x t L Ru x t Pu x t g x t     (4) 

where ( , )u x t  is derived from the initial condition. 

Supposing 0 ( , )u x t  is a function to be determined, we can rewrite eq. (4): 

 
1 1

0 0( , ) ( , ) [ ( , ) ( , ) ( , )]u x t u x t L u L u Ru x t Pu x t g x t         (5)  

If we let: 

 
1

0[ ( , ) ( , ) ( , )] 0L u Ru x t Pu x t g x t       (6) 
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Solving eq. (6), we can determine 0 ( , ),u x t and then substituting 0 ( , )u x t into eq. (5), 

we can get the exact solution of eq. (4):  

 
1

0( , ) ( , )u x t u x t L u   (7) 

According to eq. (6), we can construct the following equation: 

 
1 1

0 0 0[ ( , ) ] [ ( , ) ] ( , ) 0u R u x t L u P u x t L u g x t         (8) 

By analyzing the process of this method, we can deduce that it is critical to get the 

exact solution of eq. (3) to choose 0 ( , ) 0.u x t   

Let the solution 0 ( , )u x t of eq. (8) has the following series form: 

 0

0

( , ) ( , ), 1,2,...n

n
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

    (9) 

Substituting eq. (9) into eq. (8), we can get: 
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We let ( )nA u  be the Adomian polynomials, which are: 
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And we suppose ( , )+ [ ( , )]g x t P u x t  can be decomposed as the following series: 

 
0

( , )+ [ ( , )]= n

n

g x t P u x t g




   (12) 

According to eqs. (11) and (12) and the Adomian decomposition method, we can con-

struct the following new recursion scheme: 

 A

A
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1 1 0 0

1
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  
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 (13) 

Obviously, similarly to the classic Adomian decomposition method, we can easily 

verify that: 

 0

0

n

n

u v




  (14) 

converges.  

Then, by virtue of eqs. (7) and (14), the exact solution of eq. (4) can be easily derived. 
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Illustrative examples 

To demonstrate the effectiveness of the method, several local fractional PDE are pre-

sented. 

Example 1. Consider the following local fractional Schrodinger conduction equation:  
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  (15) 

subject to the initial condition: 

 (0, ) (2 )u t E i t 
  (16) 

According to eq. (5), eq. (15) can be transformed into the following equation: 
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Letting 0 0( , ) ( , )n nu x t v x t
  and substituting it into eq. (17), we can derive: 
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where ( )nA u  is the Adomian polynomials for the non-linear term 
2

( , ) ( , )u t x u t x  and ( )nA u  
is given: 
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Obviously, according to eq. (13), the first few Adomian polynomials are respectively 

given by: 
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In the light of eq. (12), we let: 
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where  
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Using eqs. (12), (13), (20), and (22), gives:  
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Proceeding in this manner, the rest of the components ( , )nu x t  can be completely de-

termined and then, making using of eq. (7), the exact solution of eq. (15) is: 

 
0

( , ) ( 2 ) (2 ) [2 ( )]
(1 )

m
m

m

x
u x t i E it E i t x

m


  

 






   
 

  (24) 



Yang, Y.-J., et al.: Fractional Residual Method Coupled with Adomian … 
2672 THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2667-2675 

Example 2. Consider the following non-linear gas dynamic equation: 

 
2 2

2 2

( , ) ( , )
( , ) ( , )[1 ( , )] 0

u x t u x t
u x t u x t u x t

x t

 

 

 
   

 
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 subject to the boundary and initial conditions: 

 

(0, ) sin ( )

(0, )
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u t t

u t
t
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













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Applying the inverse operator 
1 (2 )

0( ) I ( )xL      on both sides of eq. (25), and mak-

ing use of eq. (5), we obtain: 

(2 )
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x

x
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
 



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    
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According to eqs. (6) and (7), we let: 

 (2 )
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x

x
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
 


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and 
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  
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Then, we suppose: 

 
2
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




   


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and 

 0

0

( , ) ( , ) , 1,2,...n

n

u x t v x t n




    (31) 

where ( )nu t  are all constants to be determined. 

Substituting the eqs. (28) and (31) into the eq. (30), we can obtain:  

(2 )
0

0 1

( , ) sin ( ) 1 I ( , )
(1 )

n t n

n n

x
v x t t v x t


 




 

 
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 (2 )
0

1
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n
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  
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



     
        

        
  (32) 
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In the light of eq. (12), we let: 

 
1

0

= sin ( ) 1
(1 )

n

n

x
G G t







 
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  
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where  

 0 1sin , sin ( )
(1 )

x
G t G t


 

 


 
 

 (34) 

Using eqs. (11), (13), (32), and (34), gives:  

 

0 0

2
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1 0 0
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2 0 1

( 1) ( 2)
(2 )

0 1
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=sin ( ) ( , ) sin ( )
(1 ) (1 ) (1 2 )

( , ) sin ( )
(1 ) (1 2 )

( , ) sin ( )
[1 ( 1) ] [1 ( 2) ]

x

x
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m x m
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m m




  
  

 

 
 



 
 



  

 

 

 



 

 
   

      

 
   

    


  

     

.....

 
 
  

 (35) 

Substituting the eq. (35) into eq. (31), and then substituting the result into eq. (30), we 

can obtain the following exact solution of the eq. (25): 

 ( , ) ( )sin ( )u x t E x t 
   (36) 

Conclusions  

In this article, we have suggested the fractional residual method coupled with the 

Adomian decomposition method for solving the local fractional equation. The test examples 

show that the method is simple and feasible, and it is effective for solving some local differential 

equation problems.  
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