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Under investigation in this paper are two local fractional partial differential sys-
tems, one is the homogeneous linear partial differential system with initial values, 
and the other is the inhomogeneous non-linear partial differential system with in-
itial and boundary values. To solve these two local fractional systems, we employ 
the local fractional variational iteration method and obtain exact solutions. It is 
shown that the method provides an effective mathematical tool for solving linear 
and non-linear local fractional partial differential systems with initial and 
boundary values. 

Key words: homogeneous linear local fractional partial differential system, 
inhomogeneous non-linear local fractional partial differential 
system, local fractional variational iteration method, exact solution 

Introduction  

Fractional calculus or fractal calculus is very important, which has many applica-

tions in different fields [1]. He [2, 3] gave a good review on mathematical foundation of the 

fractional calculus, and gave its geometrical explanation. Physical laws in a fractal space have 

similar properties as those in a smooth space, for example, a variational principle can be es-

tablished in a fractal space [4] or in a smooth space [5]. A non-linear dynamical system, e.g., 

a Duffing oscillator [6], can be converted into a fractal vibration system if the vibration medi-

um is considered as a fractal space [7, 8].  

Since the concept of local fractional derivative was presented by Kolwankar and 

Gangal [9] in 1996, it was widely studied, and much achievement was obtained [10-20]. One 

of the graceful properties of the local fractional calculus is that it can be used to describe the 

non-differential problems in science and engineering. The celebrated variational iteration 

method (VIM) [21-28] has received a wide of applications since being proposed by He in 

1990 [21]. It is worth mentioning that the VIM was successfully extended to the local frac-

tional differential equations, and the modified method is called the local fractional VIM [13]. 

With the development of fractional calculus, solving fractional differential equations 

have been attached much attention, it is because solutions of fractional differential equations 

have theoretical and practical values. In this paper, we shall employ the local fractional VIM 

[13] to solve two local fractional partial differential systems, one is the homogeneous linear 

–––––––––––––– 
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partial differential system with initial values, and the other one is the inhomogeneous non-

linear partial differential system with initial and boundary values. 

For such purpose, it is necessary to recall in this section the local fractional calculus 

and its some properties [10]. The local fractional partial derivative of order (0 1)    at 

the point 0x x  is defined: 
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The local fractional derivative has the following properties and basic operations 

[10]: 
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where ,  ,  and C are constants, h(t) is an arbitrary function of t, while: 
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The local fractional integral of ( , )u x t  of order (0 1)    in the integral [ , ]a b  is 

defined: 
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where 1k k kx x x    with 0 1 1 .N Nx a x x x b        

The local fractional integral has the following properties and basic operations: 
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 0I [sinh ( ) ( )] [cosh ( ) 1] ( ),x x h t x h t  
   0I [cosh ( ) ( )] sinh ( ) ( )x x h t x h t  

    

Local fractional VIM for local fractional systems 

In this section, we recall the basic idea of the local fractional VIM [2, 13] for local 

fractional partial differential systems. For convenience, we suppose that the considered local 

fractional system can be written: 

 ( ) ( ) ( , )L u N u f x t    (3) 

where L  and N are linear and non-linear local fractional partial differential operators, re-

spectively, while ( , )f x t  is the source term. 

The local fractional correction functional for eq. (3) reads: 
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where   is a fractional Lagrange multiplier which can be identified optimally via the varia-

tional theory and integration by parts, nu  is considered as a restricted local fractional varia-

tion, that is 0.nu   With the help of the identified Lagrange multiplier   and the selected 

function 0 ,u  the successive approximations 1( 0)nu n   can be determined. Then the solution 
u  is immediately obtained by: 
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Solution of the homogeneous linear  

local fractional system 

In this section, we apply the local fractional VIM to the following homogeneous lin-

ear local fractional system: 
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subject to initial conditions: 

 ( ,0) sinh ,u x x ( ,0) coshv x x  (8) 

Firstly, we let the local fractional correction functionals read: 
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and then set 
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Here 0nu   and 0nv  had been used. We than have: 
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which gives: 
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In view of the initial conditions in eq. (8), we next select 0( , ) sinh ,u x t x  

0( , ) coshv x t x  and then obtain the successive approximations: 
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Finally, we obtain a pair of exact solutions of eqs. (6) and (7): 
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with the initial conditions: 

 ( ,0) sinh ,u x x  ( ,0) coshv x x   (16) 
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Solution of the inhomogeneous non-linear  

local fractional system 

In this section, we apply the local fractional VIM to the following inhomogeneous 

non-linear local fractional system: 
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Solving eqs. (21)-(23), we obtain: 
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Secondly, we select 0u x t   and obtain the following successive approximations: 
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and so on.  

Finally, we reach an exact solution of eq. (17):  

 lim ( )n
n

u u x x t 


   (24) 

In particular, if we let 1   then solution (24) becomes ,u xt  which is the exact 

solution of the known inhomogeneous non-linear system [30]: 

 
2 2

2 2 2

2 2

( , ) ( , )u x t u x t
u u xt x t

t x

 
    

 
 (25) 

subject to boundary conditions: 

 (0, ) 0,u t  ( , )u t t    (26) 

and the initial conditions: 

 ( ,0) 0,u x 
( ,0)u x

x
t





 (27) 
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Discussion and conclusion  

In the open literature, there are many analytical methods for fractional differential 

equations, for example, the exp-function method [31], the direct algebraic method [32, 33], 

the variational approach [34-36], Fourier spectral method [37] and the reproducing kernel 

method [38], and the frequency analysis method [39], this paper shows the VIM is as effective 

as the homotopy perturbation method for fractional calculus. The examples show the solution 

process is simple, and the results are of high accuracy. This paper concludes that the VIM is a 

powerful tool for fractional calculus.  
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