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A time-fractional heat equation arising in a quiescent medium is established, and 
its approximate analytical solution is obtained by the fractional power series 
method. The results show that the method performs extremely well in terms of ef-
ficiency and simplicity. 
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Introduction  

In this work, we study the following time-fractional non-linear heat equation:  

 D ( , ) e ,u
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x x

   
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 0 1   (1) 

with the initial condition: 

 ( ,0) ( )u x f x  (2) 

where and a are constants. The fractional power series method (FPSM) [1] is used to study 

eq. (1), which governs an unsteady heat transfer in a quiescent medium in the case where the 

thermal diffusivity is exponentially dependent on temperature [2-4].  

In eq. (1), Dt u denotes the Caputo fractional derivative of u defined as [5-7]: 
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where 
1
tJ 

 is the Riemann-Liouville fractional integral operator given by [5-7]: 
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The following properties hold true [5, 6]:  
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 (5)  

 D ( , ) ( , ) ( ,0), 0 1t tJ u x t u x t u x       (6) 

It is generally difficult to solve non-linear fractional partial differential equations. 
In the last two decades, some analytical methods for solving non-linear differential equations 

can be extended to solve fractional differential equations, for example, the variational method 

[8-13], the variational iteration method [14-18], the homotopy perturbation method [19, 20], 

the direct algebraic method [21, 22], the exp-function method [23], the Fourier spectral meth-

od [24], the reproducing kernel method [25]. The FPSM was proposed by El-Ajou et al. [1], 

and recently, many researchers [26-31] have obtained the series solution of fractional differ-

ential equations by using FPSM. 

Fractional power series  

The fractional power series and its applicability for various kinds of partial differen-

tial equations are given in [1, 26-31]. It is an extension of the well-known Taylor series meth-

od [32] to fractional calculus. For the convenience of the reader, we will recall some basic 

concepts. 

Definition 1. A power series representation of the form: 
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where 0 1 ,m m m N       and 0t t  is called a fractional power series (FPS) about 0t , 

where t  is a variable and nc  are the coefficients of the series.  

Theorem 1. We have the following two cases for the 0 , 0:n
n nc t t
   

– If 0
n

n nc t 
  converges when 0,t b   then it converges whenever 0 .t b   

– If 0
n

n nc t 
  diverges when 0,t d   then it diverges whenever .t d  

Theorem 2. For the series 0 , 0n
n nc t t
  , there are only three possibilities: 

– The series converges only when 0,t   

– The series converges for each 0,t   

– There is a positive real number R  such that the series converges whenever 0 t R   and 

diverges whenever .t R  

Theorem 3. The series 0
n

n nc t t
    has a radius of convergence R if and 

only if the series 0 , 0n
n nc t t
   has a radius of convergence 

1/ .R 
 

The following property plays an important role in the next section: 

Theorem 4. Suppose that the FPS has a radius of 0
n
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0 t R  , we have: 
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Solution of the problem  

In this section, we solve the initial problem:  
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We will derive the algorithms of the FPSM for solving the problem. 

Firstly, let:  

 
( , )( , ) e u x tw x t   (10) 

Then the initial problem becomes:  
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Now, suppose that the function ln[w(x, t)] takes the form:  
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Then the solution of eq. (11) is decomposed: 
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where  
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and so on. 

Thus, we obtain:  
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So, by (11), we can conclude that: 
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Hence:  
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By the initial condition, we have: 

 0 ( ) ( )a x f x  (17) 

 0( ) exp[ ( )]H x f x  (18) 

Therefore, from eqs. (14) and (16), we can obtain ( )ka x  and ( ),kH x  successively. 

For example, we have: 
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and so on. 

Finally, we get the solution of the initial value problem (9): 
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Application 

Now, we study the following problem:  
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Following the algorithm presented in the previous section, we have: 

 0 ( ) 2ln( 1)a x x   
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and so on. 

 

Figure 1. For the problem (19), FPSM result for u(x, t) is, respectively, (a) α = 1, (b) α = 0.8, (c) α = 0.5, 
and (d) exact solution 
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Thus, we obtain: 

 21 2
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(1 ) (1 2 )
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When 1,   we have:  

 2 34 1
( , ) ln(1 ) ln(1 ) ln(1 2 )

3 2
u x t x t t t x t           (21) 

which is the exact solution. 

The exact solution (21) and FPSM solution (20) for different particular cases of   

are presented graphically in fig. 1. 

Conclusion 

In this paper, we presented the application of FPSM to a time-fractional non-linear 

heat equation. The results show that FPSM is a powerful tool for solving non-linear differen-

tial equations having wide applications in science and engineering. 
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