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Introduction  

The PDE arise in many physical fields like the condensed matter physics, fluid me-

chanics, plasma physics and optics, etc. The investigation of analytical solutions plays an im-

portant role in the study of physical systems, and it is one of the central themes in mathemat-

ics and physics as well. In the past decades, many advanced methods were developed to ob-

tain analytical solutions of PDE, among which the homotopy perturbation method (HPM) [1] 

and the variational iteration method (VIM) [2] are the most used tool in engineering.  

The Taylor series method is simple and accessible to all engineers, but it is low con-

vergence hinders its wide applications [3]. The exp-function method can lead to the exact so-

lutions, but its complex calculation makes those inaccessible who are not familiar with some 

mathematics software [4-6]. The variational-based methods [7-14] can obtain a globally valid 

solution. However, it is extremely difficult to establish a needed variational principle for a 

complex non-linear problem. Among all analytical methods, the HPM [1] and the VIM [2] are 

mathematically beautiful and physically meaningful.  

In this paper, we first review the VIM and the HPM. Some examples are given to 

show the simple solution process and high accuracy of the two methods. Inspired by the idea 

of Ji-Huan He’s unapproachable ideas and the mathematics beauty of the two methods, the 

author proposes a new method for solving a class of system of Fredholm integral equations of 

the second kind, the solution process leads to solving a system of algebraic equations, which 

seems rather difficult to be solved by hand, even by software, such as MATHEMATICA, 

MAPLE, and MATLAB, this paper suggests an effective method for this purpose, that is 

Wu’s method [15]. 
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The variational iteration method 

The VIM was first proposed in the later 1990’s [2], and was further developed by Ji-

Huan He and his students [16-19], and it is now thoroughly used by mathematicians to handle 

a wide variety of non-linear equations, the publications arose gradually and 2000 saw more 

than 300 articles on the VIM according to Clarivate Analytics’ Web of Science, fig. 1.  

 

Figure 1. Publications on the VIM according to  
Clarivate’s Web of Science (March 2, 2021) 

It has been proved that this method is effective and reliable for various approximate 

analytical purposes. The method gives rapidly convergent successive approximations of the 

exact solution if such a solution exists.  

Consider the following differential equation 

 ( )Lu Nu g t   (1) 

where L and N are linear and non-linear operators, respectively, and ( )g t – the inhomogene-

ous source term. 

The VIM presents a correction functional for eq. (1) in the following form: 

 1

0

( ) ( ) ( )[ ( ) ( ) ( )]d

t

n n n nu t u t Lu Nu g           (2) 

where λ is a general Lagrange multiplier and ( )nu   – the restricted variation. 

  It is obvious that the main steps of the He’s VIM require first the determination of 

the Lagrange multiplier, λ(ξ). Integration by parts is usually used for the determination of the 

Lagrange multiplier, λ(ξ). In other words, we can use: 

   ( ) ( )d ( ) ( ) ( ) ( )dn n nu u u               (3) 

 ( ) ( )d ( ) ( ) ( ) ( ) ( ) ( )dn n n nu u u u                     (4) 

and so on. 

The original VIM uses the variational theory [1] to optimally identify the Lagrange 

multiplier involved in the variational iteration algorithm. Now the problem is completely 

changed, the Laplace transform can make the identification extremely simple [17]. If we have 

determined the Lagrange multiplier, λ(ξ), the successive approximations un+1, n ≥ 0 of the so-

lution u will be readily obtained upon using any selective function u0. Consequently, the solu-

tion: 

lim n
n

u u


  
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Remark 1  

The determination of the Lagrange multiplier plays an important role in the determi-

nation of the solution of the problem. In what follows, we summarize some iteration formulae 

that show ODE, its corresponding Lagrange multipliers, and its correction functional, respec-

tively [18]: 

1

0

' [ ( ), '( )] 0, 1

(i)
[ ( , )] d

x

n n n n n

u f u u

u u u f u u

  



   



   



 

1

0

[ ( ), ( ), ( )] 0, ( )

(ii)
+ ( )[ ( , , )]d

x

n n n n n n

u f u u u x

u u x u f u u u

    

 

     



    



 

2

2
1

0

1
[ ( ), ( ), ( ), ( )] 0, ( )

2!
(iii)

1
( ) [ ( , , )]d

2!

x

n n n n n

u f u u u u x

u u x u f u u

     

 


       



     




 

(iv) (iv) 3

3 ( )
1

0

1
[ ( ), ( ), ( ), ( ), ( )] 0, ( )

3!
(iv)

1
( ) [ ( , , , )]d

3!

x
iv

n n n n n n

u f u u u u u x

u u x u f u u u

      

 


     



     




 

… 

( ) (n) ( 1)

( 1) ( )
1

0

1
[ ( ), ( ), , ( )] 0, ( 1) ( )

( 1)!
(n)

1
( 1) ( ) [ ( , , )]d

( 1)!

n n n

x
n n n

n n n n n

u f u u u x
n

u u x u f u u
n

    

 







     


     
 



 

Example 1 

Consider the following inhomogeneous PDE [20]: 

 
2 22 2 , ( ,0) , (0, )x yu u x y u x x u y y      (5) 

The correction functional for eq. (5) is: 

 1

0

( , ) ( , )
( , ) ( , ) ( ) 2 2 d

x
n n

n n

u y u y
u x y u x y y

y

 
   




  
     

   
  (6) 
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Using eqs. (3) and (4), the stationary conditions: 

 =1+ | 0x   (7) 

 =| 0x   (8) 

Equations (7) and (8) give the result: 

λ = –1 

substituting this value of the Lagrange multiplier λ = –1 into the functional (6) gives the itera-

tion formula: 

 1

0

( , ) ( , )
( , ) ( , ) 2 2 d , 0

x
n n

n n

u y u y
u x y u x y y n

y

 
 




  
      

   
  (9) 

as stated before, we can select u0(x, y) = u(0, y) = y2 from the given conditions. Using this se-

lection into eq. (9) we obtain the following successive approximations: 

2
0 ( , )u x y y  

2 2 20 0
1

0

( , ) ( , )
( , ) 2 2 d

x
u y u y

u x y y y x y
y

 
 



  
       

  
  

2 2 2 21 1
2

0

( , ) ( , )
( , ) 2 2 d

x
u y u y

u x y x y y x y
y

 
 



  
        

  
  

2 2 2 22 2
3

0

( , ) ( , )
( , ) 2 2 d

x
u y u y

u x y x y y x y
y

 
 



  
        

  
  

 

2 2( , )nu x y x y   

the VIM admits the use of: 

 
( , ) lim ( , )n

n
u x y u x y




 (10) 

that gives the exact solution by: 

 
2 2( , )u x y x y   (11) 

Example 2 

 Consider the following Volterra integral equation [21]: 

 
2

0

1
( ) 1 ( )d

2

x

u x x u t t     (12) 

Using Leibnitz rule to differentiate both sides of eq. (12) once gives: 
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 ( ) ( ) 0u x x u x     (13) 

Substituting x = 0 into eq. (12) gives the initial condition u(0) = 1, the correction 

functional for eq. (13) is: 

 1

0

( ) ( ) ( )[ ( ) ( )]d

x

n n n nu x u x u u     
     (14) 

using the formula (i) given below in the Remark1 leads to: 

 λ = –1 (15) 

Substituting this value of the Lagrange multiplier λ = –1 into the functional (14) 

gives the iteration formula: 

 1

0

( ) ( ) [ ( )+ ( )]d

x

n n n nu x u x u u   
    (16) 

As stated before, we can use the initial conditions to select u0(x) = u(0) = 1. Using 

this selection into eq. (14) gives the following successive approximations: 

0( ) 1u x   

2
1 0 0

0

1
( ) 1 [ ( )+ ( )]d 1

2

x

u x u u x x          

2 3

2 1 1

0

( ) 1 [ ( ) ( )]d 1
2 6

x
x x

u x x u u x             

2 4

3 2 2

0

( ) 1 [ ( ) ( )]d 1
6 24

x
x x

u x x u u x             

4 5

4 3 3

0

( ) 1 [ ( ) ( )]d 1
24 120

x
x x

u x x u u x             

 

The VIM admits the use of: 

 ( ) lim ( )n
n

u x u x


  (17) 

that gives the exact solution by: 

 ( ) 1u x x   (18) 

The homotopy perturbation method 

The HPM was introduced and developed by Ji-Huan He in the late 1990’s [1] and 

was further developed by Ji-Huan He and his student [22-37]. The method couples a ho-
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motopy technique of topology and a perturbation technique. A homotopy with an embedding 

parameter p Î[0, 1] is constructed, and the impeding parameter p is considered a small pa-

rameter. The coupling of the perturbation method and the homotopy method has eliminated 

the limitations of the traditional perturbation technique, and now the method has become a 

completely matured tool for various problems, and there have been many modifications. Fig-

ure 2 shows publications on the HPM according to Clarivate’s Web of Science per year. 

 

Figure 2. Publications on the HPM according to  
Clarivate’s Web of Science (March 2, 2021) 

The modification with an auxiliary parameter [27, 28] is highly suitable for a non-li-

near vibration system, and the modification with two expanding parameters [29] or three expan-

sion [30] is for complex problems with more than one non-linear term. The Elzaki transform 

makes the solution process much simpler [31]. He’s multiple scales method [32] and the reduc-

ing rank method [33, 34] are two effective modifications of the HPM for non-linear oscillators. 

Li-He's modification is very much promising, it is to improve the original differential equation 

to a higher-order partner, then the HPM is used for the resultant equation. This modification is 

called as Li-He’s modified homotopy perturbation [35, 36] or the higher-order HPM [37]. The 

HPM is now extended to fractal or fractional differential equations [38-42] and can deal with 

various periodic and instable properties of non-linear systems [43-45].  

In the next, we illustrate the HPM to handle Fredholm integral equations of the first 

kind of the form: 

        ( ) ( , ) ( )d

b

a

f x K x t u t t   (19) 

We now define the operator: 

 ( ) ( ) ( , ) ( )d 0

b

a

L u f x K x t u t t    (20) 

and construct a convex homotopy of the form: 

 ( , ) (1 ) ( ) ( )( ) 0H u p p u x pL u x     (21) 

The embedding parameter p monotonically increases from 0 to 1. The HPM admits 

the use of the expansion:  

 
0

n
n

n

u p u




  (22) 

and consequently: 
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1

0

( ) lim ( )n
n

p
n

u x p u x





   (23) 

The series (23) converges to the exact solution if such a solution exists by setting 

p = 1. 

Substituting eq. (22) into eq. (21), we obtain the recurrence relations: 

  0 ( ) 0u x   (24) 

  1( ) ( )u x f x  (25) 

 1( ) ( ) ( , ) ( )d , 1

b

n n n

a

u x u x K x t u t t n     (26) 

Remark 2  

If the kernel is separable, i.e. K(x, t) = g(x)h(t), then the following condition: 

 1 ( , )d 1

b

a

K t t t   (27) 

must be justified for convergence. 

Example 3 

 Consider the following Fredholm integral equation [23]: 

 

1/2
3 3 3

0

1
e e ( )d

2

x x tu t t   (28) 

Noticing that: 

 

1/2

0

1 ( , )d 0 1K t t t    (29) 

and using the recurrence relation (24)-(26), we find: 

0 ( ) 0u x   

 
3

1

1
( ) e

2

xu x   

1/2
3 3

1

0

( ) ( ) e ( )d , 1x t
n n nu x u x u t t n
     

This in turn gives: 

 0 ( ) 0u x   

3
1

1
( ) e

2

xu x   
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1/2
3 3 3

2 1 1

0

1
( ) ( ) e ( )d e

4

x t xu x u x u t t    

1/2
3 3 3

3 2 2

0

1
( ) ( ) e ( )d e

8

x t xu x u x u t t    

1/2
3 3 3

4 3 3

0

1
( ) ( ) e ( )d e

16

x t xu x u x u t t    

and so on. Consequently, the approximate solution is given by: 

 
3 1 1 1 1

( ) e
2 4 8 16

xu x
 

     
 

 (30) 

That converges to the exact solution: 

 
3( ) e xu x   (31) 

A new analytical method for solving a class of  

system of Fredholm integral equations 

In this section, we will study systems of non-linear Fredholm integral equations of 

the second kind given by: 

1 1 1 1 1( ) ( ) { ( , ) [ ( )]+ ( , ) [ ( )]}d

b

a

u x f x K x t F u t K x t F v t t    

 2 2 2 2 2( ) ( ) { ( , ) [ ( )]+ ( , ) [ ( )]}d

b

a

v x f x K x t F u t K x t F v t t    (32) 

The unknown functions u(x) and v(x), that will be determined later, occur inside and 

outside the integral sign. The kernels K1(x, t), K2(x, t), 1 2( , ), ( , ),K x t K x t and the function f1(x) 

and f2(x) are given real-valued polynomial functions, 
1 1 2 2[ ( )], [ ( )], [ ( )], [ ( )]F u t F v t F u t F v t , are 

linear or non-linear functions of u(x) and v(x). The K1(x, t), K2(x, t), 1 2( , ), ( , )K x t K x t are de-

generate or separable kernels of the form: 

 1 1

1 1

( , ) ( ) ( ), ( , ) ( ) ( )
n n

k k k k

k k

K x t g x h t K x t g x h t
 

    (33) 

 2 2

1 1

( , ) ( ) ( ), ( , ) ( ) ( )
n n

k k k k

k k

K x t r x s t K x t r x s t
 

    (34) 

Step1. Substitute eqs. (33) and (34) into the system (32) to obtain: 

1 1 1

1 1

( ) ( ) ( ) ( ) [ ( )]d + ( ) ( ) [ ( )]d

b bn n

k k k k

k ka a

u x f x g x h t F u t t g x h t F v t t
 

     
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 2 2 2

1 1

( ) ( ) ( ) ( ) [ ( )]d + ( ) ( ) [ ( )]d

b bn n

k k k k

k ka a

v x f x r x s t F u t t r x s t F v t t
 

     (35) 

Step2. Each integral at the right side depends only on variable t with constant limits 

of integration for t. This means that each integral is equivalent to a constant. Based on this, 

eq. (35) becomes: 

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n nu x f x g x g x g x g x           

 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n nv x f x r x r x r x r x           (36) 

where 

 1( ) [ ( )]d , 1

b

i i

a

h t F u t t i n     (37) 

 1( ) [ ( )]d , 1

b

i i

a

h t F v t t i n     (38) 

 2( ) [ ( )]d , 1

b

i i

a

s t F u t t i n     (39) 

 2( ) [ ( )]d , 1

b

i i

a

s t F v t t i n     (40) 

Step 3. Substituting eq. (36) into eq. (32) gives a system of algebraic equations 

about αi, βi, γi, δi (1 ≤ i ≤ n), the system of algebraic equations is difficult to solve, we use 

Wu’s method [15] to solve it. 

Example 4 

Let us consider the following non-linear system [46]: 

1

1 1 2

0

5 1
( ) [ ( ) ( )]d

18 3
f x x f t f t t     

 

1
2 2

2 1 2

0

2 1
( ) [ ( ) ( )]d

9 3
f x x f t f t t     (41) 

This system can be rewritten as: 

1 1 2

5 1
( ) ( )

18 3
f x x c c     

 
2

2 3 2

2 1
( ) ( )

9 3
f x x c c     (42) 

where 
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1 1 1
2

1 1 2 2 3 1

0 0 0

( )d , ( )d , ( )dc f t t c f t t c f t t      (43) 

Substitute eq. (42) into eq. (41), we obtain: 

31 2
1 2

21 1 1
( ) 0

3 3 3 3 3 3

cc c
c c

 
       

 
 

 2 2
1 2 2 1 2 3

1
[ 79 36 168 36 24 (2 3 ) 216 ] 0

972
c c c c c c         (44) 

Using the algebraic form of Wu’s method to solve eq. (44), we have: 

 
1 3 1 3

2 3 2 3

1 6 6 0 53 6 6 0
and

3 2 3 0 3 56 3 0

c c c c

c c c c

      

     
 (45) 

which lead to: 

 
1 2 1 2

2 3 2 3

5 59

6 6
and

2 56

3 3

c c c c

c c c c

   

   

 (46) 

Substituting eq. (46) into eq. (42), we obtain: 

 
2

1 2( ) , ( )f x x f x x   (47) 

and 

 2
1 2( ) 3, ( ) 6f x x f x x     (48) 

Remark 3  

By using the method proposed in [46], only the solution (47) is obtained, well the 

solution (48) is not obtained. 

Conclusions  

In this paper, the VIM and the HPM are reviewed firstly, inspired by the idea of the 

two methods. The author proposes a new method for solving a class of system of Fredholm 

integral equations of the second kind, the solution process can be come down to solving a sys-

tem of algebraic equations, which rather difficult to be solved, the algebraic form of Wu’s 

method is used to solve this problem, and very well results are obtained. 
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