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This paper focuses on solving the time fractional Caudrey-Dodd-Gibbon-Sawa-
da-Kotera equation (FCDGSKE). We propose two analytical methods based on 
the fractional complex transform, the variational iteration method and the ho-
motopy perturbation method. The approximated solutions to the initial value 
problems associated with FCDGSKE are provided without linearization and 
complicated calculation. Numerical results show the main merits of the analytical 
approaches. 
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Introduction 

Consider the FCDGSKE [1]: 

 230 30 180 0t xxxxx xxx x xx xu u uu u u u u       (1) 

where the fractional derivative (0 1)tu   is defined by: 

 

0

1
0

1 d
( ) [ ( , ) ( , )d

( ) d

tn
n

t n
t

u
u s t u x s u x s s

nt t


 

 

 
   

 
  (2) 

with a known function u0(x, t) [2, 3]. When α = 1, the fractional eq. (1) reduces to the fifth-or-

der CDGSKE [4]. Equation (1) with α = 1 was also called as CDG equation [5, 6] or SK equa-

tion [7]. The physical understanding of CDGSKE was illustrated in [4]. 

The CDGSKE was widely applied in the area of fluid dynamics [4-7]. In the past 

decades, many different solutions to CDGSKE were developed by the analytical or numerical 

methods, including the dressing method [7], Darboux transformation [4], Backlund transfor-

mation in bilinear forms [8], Hirota's bilinear method [9], the exp-function method [10], the 

exp[–φ(z)]-expansion method [11], the Riemann theta function method [12], the variational 

approach [13, 14], the Fourier spectral method [15], and the reproducing kernel method [16], 

and so on. There are also some research results about the non-linear (2+1)-D CDGKSE, 

which can be seen as the general form of CDGSKE [17]. Recently, Baleanu et al. [1] investi-

gated the exact solutions of FCDGSKE by the Lie symmetry analysis. In this paper, we aim to 
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consider the numerical behavior of FCDGSKE. Motivated by the idea of the fractional com-

plex transform [18-22], we propose two analytical approaches based upon the efficient meth-

ods, including the variational iteration method [23-29] and the homotopy perturbation method 

[30-35]. We name these two methods as FCT-VIM and FCT-HPM, respectively. Due to the 

efficiency of  

FCT-VIM and FCT-HPM, the approximations can be given with high accuracy. Numerical 

experiments with an initial value problem are presented to confirm the efficiency. 

Fractional complex transform (FCT) 

We consider a fractional PDE: 

 2 2( , , , , ,...) 0t x x xf u u u u u      (3) 

where [ ( , )]/tu u x t t     denotes He's fractional derivation [2, 3] defined by eq. (2), the 

function u(x, t) is continuous (but not necessarily differentiable), and 0 < α < 1, 0 < β < 1. It is 

difficult to give the exact solutions of the fractional PDE. In order to give the analytical or 

numerical solutions of eq. (3), He and Li proposed a fractional complex transform [18-21]: 
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with non-zero constants p and q [18-21]. In view of eq. (4), we have: 
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The fractional complex transform can be explained by the two-scale fractal theory 

[36-44], and it is also called the two-scale transform. 

Then the original fractional partial differential eq. (3) can be transformed to an ordi-

nary partial differential equation. 

Analysis of the variational iteration method 

We consider the following differential equation: 

 Lu + Nu = g(x) (7) 

where L is a linear operator, N – a non-linear operator, and g(x) – the inhomogeneous term. 

Then we can construct a correct functional: 

 1

0

( ) ( ) { ( ) ( ) ( )}d

x

n n n nu x u x Lu Nu g          (8) 

where λ is a general Lagrange multiplier [23-29] which can be identified optimally via varia-

tional theory. The second term on the right is called the correction and nu is considered as a 

restricted variation, i. e. 𝛿�̃�𝑛 = 0. 
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Analysis of the homotopy perturbation method 

To illustrate the idea of the homotopy perturbation method [30-35], we consider the 

following non-linear differential equation: 

 A(u) – f(r) = 0, r   (9) 

with boundary conditions; 
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where A is a general differential operator, B – a boundary operator, u – a known analytic func-

tion, and Γ – the boundary of the domain. 

The operator A can be divided into two parts, L and N, where L is linear and N non-

linear. Therefore eq. (9) can be rewritten: 

 L(u) + N(u) – f(r) = 0 (11) 

By the homotopy perturbation method [30-35], we can construct a homotopy v(r, p): 

Ω×[0, 1] → R which satisfies: 

 H(v, p) = (1 – p)[L(v) – L(u0)] + p[A(v) – f(r)] = 0 (12) 

or 

 H(v, p) = L(v) – L(u0) + pL(u0) + p[N(v) – f(r)] = 0 (13) 

where r   and p  [0, 1] is an embedding parameter, u0 – an initial approximation of eq. 

(9), which satisfies the boundary conditions. 

Assume that the solution of eq. (12) can be expressed as a power series in p: 

 v = v0 + pv1 + p2v2 +… (14) 

Then the approximate solution of eq. (9) can be given by: 
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Numerical experiments 

We consider the initial value problem of FCDGSK eq. (1) with the following initial 

condition: 

 2 21 1
( ,0) sech

4 2
u x k kx c
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 (16) 

where k and c are arbitrary constants. The single soliton solution to the classical CDGSK eq. 

(1) is given by [9]: 
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Application of FCT 

By FCT technique with T = tα/[(1 + α], the previous initial value problem can be 

equivalently transformed to the ordinary PDE:  

 uT + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0 (18) 

with the initial condition (16). 

Application of FCT-VIM 

By using VIM, it is easy to obtain the iteration formulae: 

1
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 230 ( , ) 180 ( , ) ( , )}dnx nxx n nxu u x u x u x      (19) 

The stationary conditions are given by: 
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which yields that λ = –1. Therefore, we have the following iteration formula: 
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We call this analytical approach based upon fractional complex transform and varia-

tional iteration method as FCT-VIM. 

We begin with the initial approximation: 
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with k = 0.5 and c = 0.5, and obtain the first-order approximation: 

u1(x, T) = sech2(0.25x + 0.5){0.0625 + 0.00195312tanh(0.25x + 0.5)T· 

·[sech4(0.25x + 0.5)] + tanh4(0.25x + 0.5) +  

+0.00390625Tsech2(0.25x + 0.5) 

 tanh3(0.25x + 0.5)} (22) 

The rest approximations can be given by eq. (21). Recalling the fractional 

complex transform T = tα/[(1 + α], we have the following approximation to eq. (1): 

2
1( , ) sech (0.25 0.5) 0.0625 0.00195313tanh(0.25 0.5)

(1 )

t
u x t x x




    

 
 

 

4 4

2 3

·[sech (0.25 0.5) tanh (0.25 0.5)]

0.00390625 sech (0.25 0.5) tanh (0.25 0.5)
(1 )

x x

t
x x





   

   
 

 (23) 



Chen, B., et al.: Two Analytical Methods for Time Fractional Caudrey- … 
THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2535-2543 2539 

The formulation of u2(x, t) is omitted here, due to the complexity of the expression. 

Application of FCT-HPM 

By HPM for (18), it follows the homotopy v(r, p): Ω×[0, 1] → R satisfying that: 

vt(x, T) – v0t(x, T) + pv0t(x, T) + p[vxxxxx(x, T) + 30v(x, T)vxxx(x, T) + 

 + 30vx(x, T)vxx(x, T) + 180v2(x, T)vx(x, T)] = 0 (24) 

with the initial approximation: 

2 2
0

1 1
( , ) ( ,0) sech

4 2
v x T u x k kx c

 
   

 
 

Assume that the solution to eq. (18) is defined by: 

 v(x, T) = v0(x, T) + pv1(x, T) + p2v2(x, T) + … (25) 

Substituting eq. (25) to eq. (24), and equating the terms of the same power of p, we 

have that: 

1 2
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2 2
2 1 0 1 1 0 0 1 1 0 0 1 2

: 30 30 180 0, ( ,0) 0

: 30 30 30 30 180 0, ( ,0) 0

T T xxxxx xxx xx x

T xxxxx xxx xxx x xx x xx x

p v v v v v v v v v v x

p v v v v v v v v v v v v v x

      

         

We name the above approach FCT-HPM. By the above equations with the given 

constants k = c = 0.5, it is easy to obtain the first order HPM solution: 

u1(x, T) = sech2(0.25x + 0.5){0.0625 + 0.00195312tanh(0.25x + 0.5)T· 

·[sech4(0.25x + 0.5) + tanh4(0.25x + 0.5)] +  

 + 0.00390625Tsech2(0.25x + 0.5)tanh3(0.25x + 0.5)} (26) 

It is easy to find that the first-order approximation is the same as that by FCT-VIM. 

Finally, we have the fractional FCT-HPM solution defined by eq. (23). We remark that the 

second-order approximation can be given after the calculation of v2. 

Numerical comparisons 

In this section, we consider the efficiency of FCT-VIM and FCT-HPM for solving 

eq. (1). For simplicity, the second-order approximations obtained by FCT-VIM and FCT-

HPM are denoted by uVIM and uHPM, respectively. 

We first give the numerical results for the classical CDGSK equation. Figure 1 

shows the numerical behavior of the second-order approximated solutions and the exact solu-

tions u(x, t) when α = 1. The approximated solutions given by FCT-VIM or FCT-HPM agree 

well with the exact solutions to CDGSKE. We then consider the behavior of the solutions to 

eq. (1) when the time t is set as t = 5. Figure 2 shows the curves of the approximations and the 

exact solutions, respectively. The absolute errors of uVIM and uHPM are given in fig. 3. The 

FCT-HPM performs slightly better than FCT-VIM in this example. We remark that the accu-

racy of the approximated solutions can be further improved by considering more iteration 

steps of FCT-VIM or FCT-HPM. 
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In order to further illustrate the effectiveness of FCT-VIM and FCT-HPM for 

FCDGSKE, we provide the numerical results of the approximations with different α and time 

t. The numerical solutions can be obtained without linearization, perturbation or complicated 

iterations. Figure 4 shows the behavior of the approximated solutions obtained by FCT-VIM 

and FCT-HPM for FCDGSKE with 𝛼 = 0.5. The numerical results for FCDGSKE with 

𝛼 = 0.8 are plotted in fig. 5. 

 

Figure 1. Results of (a) uVIM, (b) uHPM, and (c) uExact with –50 ≤ x ≤ 50 and 0 ≤ t ≤ 10 

 

Figure 2. Results of (a) uVIM and (b) uHPM when t = 5 

 

Figure 3. Numerical errors of (a) uVIM and (b) uHPM when t = 5 
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Figure 4. Fractional solutions of (a) uVIM and (b) uHPM with α = 0.5 

   

Figure 5. Fractional solutions of (a) uVIM and (b) uHPM with α = 0.8 

Conclusion 

This paper proposed two analytical approaches based on the fractional complex 

transform, the variational iteration method and the homotopy perturbation method. The initial 

value problem associated with the time FGDGSKE was used as an example to show the effi-

ciency of these two methods. In future work, we will extend these analytical approaches to 

fractal differential equations [36-44]. 
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