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Internal solitary waves are very common physical phenomena in the ocean, 
which play an important role in the transport of marine matter, momentum and 
energy. The non-linear Schrodinger equation is suitable for describing the deep-
sea internal wave propagation. Firstly, by designing skillfully, the trial-Lagrange 
functional, variational principles are successfully established for the non-linear 
Schrodinger equation by the semi-inverse method. Secondly, the constructed var-
iational principle is proved by minimizing the functionals with the calculus of 
variations. Finally, different kinds of internal solitary waves are obtained by the 
semi-inverse variational principle for the non-linear Schrodinger equation. 
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Introduction 

Ocean internal waves [1-3] are a kind of physical motion that occurs in the interior 

of fluid, and they exist in the world ocean. The study of internal waves in the ocean is of great 

significance to the theoretical research of ocean science, utilization of marine resources, as 

well as marine military and engineering. Ocean internal waves play an important role in ocean 

dynamics, which affect the transport of marine matter, momentum, and energy. At present, 

the well-known KdV equation is only suitable for describing the propagation of small ampli-

tude internal waves in shallow water [4-10], but there will be large errors in modeling large-

amplitude internal waves in the deep sea. For deep-sea internal waves, the Benjamin-Ono 

equation is derived by Benjamin [11] and Ono [12], while the intermediate longwave equation 

is derived by Kubota et al. [13] and Choi and Camassa [14] obtained the fully non-linear evo-

lution equation of the internal wave at the two-layer interface. The derived equation can be 

reduced to the intermediate longwave equation when it is weakly non-linear and propagates 

along one direction, and can be reduced to the Benjamin-Ono equation in infinite water depth. 

Song et al. [15] established the non-linear Schrodinger (NLS) equation under two-layer strati-

fication, trying to develop a more accurate equation of the ocean internal wave characteristics 

in a specific environment, to minimize the gap between the real value and the NLS equation. 

Solving the non-linear PDE with integer or fractional orders is always an attractive and hot 
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topic for many researchers in different scientific fields, because of their outstanding ability for 

modeling non-linear phenomena [16-22]. Numerous mathematical techniques have been de-

veloped to explore the approximate and exact solutions [23-26], of which variational-based 

methods have been very useful and effective, such as the variational iteration method [27-30], 

and variational approximation method [31-35], etc. When contrasted with other methods, var-

iational ones show some advantages. In this paper, the NLS equation of the ocean internal 

wave model is studied by the semi-inverse method [36-51], which was first proposed in 1997 

by Dr. Ji-Huan He, who is a famous Chinese mathematician. At first, by designing skillfully, 

the trial-Lagrange functional, variational principle are successfully established for the NLS 

equation by the semi-inverse method. Then, the constructed variational principle is proved 

correct by minimizing the functionals with the calculus of variations. Furthermore, different 

kinds of internal solitary waves are obtained by the semi-inverse variational principle for the 

NLS equation. 

Variational principles for internal solitary waves 

The NLS equation is one of the most active research topics and is a fundamental 

equation of a wide range of physical phenomena, such as quantum mechanics, hydrodynam-

ics, plasma physics, non-linear optics, self-focusing in laser pulses, propagation of heat pulses 

in crystals, description of the dynamics of Bose-Einstein condensate at extremely low temper-

atures. For inviscid fluids, ignoring the influence of Coriolis force, if the fluid is selected as a 

two-layer structure, the NLS equation for deep-sea internal waves can be derived from the 

continuity equation and Bernoulli equation. 

 
2

0t xxiA A A A A        (1) 

which can describe the propagation of internal solitary waves in the ocean. In eq. (1), A  rep-

resent complex amplitude fields and 1i   , α is the dispersion coefficient, and β and γ
 
are 

parameters of constant values, which respectively indicate the effects of non-linearity and lin-

earity. On substituting A(x, t) = q1(x, t) + iq2(x, t) into eq. (1), where q1 and q2 are the real-

valued functions of t and x, we obtain the following PDE for q1 and q2 in real space: 
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The target is searching for variational formulations whose stationary conditions sat-

isfy eqs. (2) and (3). With the help of He’s semi-inverse method [36], a trial-functional is con-

structed in the following form: 
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where F is an unknown function of q2 and their derivatives. There are various alternative ap-

proaches to the construction of trial-functional, illustrating examples can be found in [36], and 

detailed discussion about how to construct a suitable trial-functional is given in [36-51]. The 
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main merit of the previous trial-functional lies on the fact that the stationary condition with 

respect to q1 results in eq. (3). 

Now calculating the variational derivative of the functional, in eq. (4), with respect 

to q1, we obtain the following Euler equation: 

 2 21
1 2 2

2

( ) 0
q F

q q q
t q


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where dF/dq2 is called He’s variational derivative with respect to q2, defined as [31]: 
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We search for such an F so that eq. (5) becomes eq. (2). Accordingly, we set: 
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from which the unknown F can be determined: 
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After embedding eqs. (7) or (8) into eq. (4), two variational principles in real space 

are established for the NLS eq. (1), respectively: 
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Proof. Making any one of the previous functionals stationary with respect to all in-

dependent functions q1 and q2 severally, the following Euler-Lagrange equations can be ob-

tained: 
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in which dq1 and dq2 are the first-order variations for q1 and q2. Obviously, eqs. (11) and (12) 

are totally equivalent to the field eqs. (3) and (2), in turn. Successfully, we proved the ob-

tained two variational principles (9) and (10) correct. 

Solitary wave solutions by the semi-inverse variational principle 

To simplify the NLS equation, after inserting 
( )d

e
i

A A
    into eq. (1), and then 

omit superscript, we obtain the new equation: 
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where eq. (1) is a NLS equation in the standard form of internal solitary waves. Where α and 

β are dispersion coefficient and non-linear coefficient, respectively. They are related to the 

density and depth of the upper and lower fluids, h1 and h2 – the depths of the upper and lower 

fluids, respectively. 

The initial hypothesis to analyze the NLS equation for deep ocean internal waves is: 

 ( )( , ) ( )ei mx ntA x t f    (14) 

where the traveling wave transform is: 

 x Et    (15) 

where m and n are constants, f – an undetermined real function, and E – the wave velocity: 

 2 3( ' ) ( '' 2 ' ) 0i Ef inf f imf m f f          (16) 

 ( 2 ) ' 0E m f   (17) 

where f″ = (d2f)/(dξ2), and f ′  = (df)/(dξ), and the speed of the soliton, from eq. (17), is: 

 2E m   (18) 

Furthermore, from eq. (16), we can get: 

 2 3( ) 0f n m f f        (19) 

By using the semi-inverse method [36], the variational formulation of eq. (19) can 

be obtained: 
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Now, f is assumed to have the following form: 

 
sech( ),f p q x Et     (21) 

where p and q are two parameters to be determined. 

In order to obtain the two parameters function f, we insert eq. (21) into eq. (20), and 

after some manipulations, we get: 
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In order to get the stagnation point of J on p and q, we are minimizing the previous 

functional with respect to two unknown parameters. The following equations are given: 
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The equations are transformed into: 
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After solving the algebraic equations, we can get: 
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Finally, the solitary wave solutions to eq. (13) are obtained: 
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Obviously, by giving different values to 

the parameters for α, β, m, n, and E, we will get 

different solitary wave solutions. If the parame-

ters are set as α = 0.2, β = 0.2, m = 2, n = 2, and 

E = 2, we can plot the solitary wave solution as 

fig. 1. From fig. 1, it is easy to show that the 

amplitude of wave solution is very local in 

space and has characteristics of soliton. 

Similarly, we can choose a different form 

of solution function: 

 2sech ( ),f p q x Et     (28) 

The calculation procedure is similar to previous one, and p and q undetermined pa-

rameters. 

In order to obtain the following two-parameter function, we insert eq. (18) into eq. 

(11): 

 

Figure 1. The shape of the solitary wave 
solution given by eq. (27) 
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In order to get the stagnation point of J on p and q, we set up the following equa-

tions: 
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Or simplify to get: 
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After solving the algebraic equations, we can get: 
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The result is: 
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Obviously, by giving different values to 

the parameters for α, β, m, n, and E, we will get 

different solitary wave solutions. If the parame-

ters are set as α = 0.2, β = 0.2, m = 2, n = 2, and 

E = 2, we can plot the solitary wave solution as 

fig. 2. From fig. 2, it is easy to show that the amplitude of wave solution is very local in space 

and has soliton characteristics. 

Conclusion 

Internal solitary waves are ubiquitous physical phenomena in the ocean, which play 

an essential role in the transport of marine matter, momentum and energy. The NLS equation 

is suitable for describing the deep-sea internal wave propagation. In this paper, variational 

 

Figure 2. The shape of the solitary wave 
solution given by eq. (33) 
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principles have been successfully constructed for the NLS equation by the semi-inverse meth-

od [36-51] and designing skillfully trial-Lagrange functionals. Subsequently, the obtained var-

iational principles have proved correct by minimizing the corresponding functionals. From the 

analysis results, it is concluded that the variational principle for the NLS equation studied in 

this paper has two different integral formulations, from which the same control equations can 

be derived. Then, different solution structures for solitary waves are obtained by the semi-

inverse variational principle for the NLS equation. From the figures of solutions, it is easy to 

show that the amplitude of wave solution is very local in space and has characteristics of soli-

ton. Our work in the future will focus on the dynamics of soliton in the NLS equation, by the 

variational approximation method using the established variational principles and methods in 

this paper. 
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