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It is an important and difficult inverse problem to construct variational principles 
from complex models directly, because their variational formulations are theoret-
ical bases for many methods to solve or analyze the non-linear problems. At first, 
this paper extends two kinds of non-linear geophysical KdV equations in continu-
um mechanics to their fractional partners in fractal porous media or with irregu-
lar boundaries. Then, by designing skillfully, the trial-Lagrange functional, var-
iational principles are successfully established for the non-linear geophysical 
KdV equation with Coriolis term, and the high-order extended KdV equation with 
fractal derivatives, respectively. Furthermore, the obtained variational principles 
are proved to be correct by minimizing the functionals with the calculus of varia-
tions. 

Key words: variational principle, geophysical KdV equation, fractal dimension, 
high-order extended KdV equation, semi-inverse method 

Introduction 

Solving PDE with integer or fractional orders is always an attractive and hot topic 

for many researchers in different scientific fields because of their outstanding ability to model 

non-linear phenomena [1-5]. Investigating solutions of such non-linear PDE is a critical re-

search area, and numerous mathematical techniques have been developed to explore the ap-

proximate and exact solutions, of which variational-based methods have been very useful and 

effective, such as Ritz technique [6-9], variational iteration method [10-13], and variational 

approximation method [14-20], etc. When contrasted with other methods, variational ones 

show some advantages. For example, they can provide physical insight into the nature of the 

solutions and investigate practical problems from a global perspective. The obtained solutions 

are the best among all possible trial-functions. We require much less strong local differentia-

bility of variables than those for PDE, such as the finite difference method, the finite volume 

method, etc. Because variational principles are so important for obtaining the approximate or 

exact solutions [14-20], it is of great significance to seek explicit variational formulations for 

the non-linear PDE. It is also an inverse problem to find variational principles directly from a 
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set of known equations by the calculus of variations. The semi-inverse method [21-30] was 

firstly proposed in 1997 by Dr. Ji-Huan He, who is a famous Chinese mathematician. The 

semi-inverse method has been widely used to establish variational principles from the govern-

ing equations directly, and has become a significant and effective tool in the variational theory 

far beyond the well-known Lagrange multiplier method [21-30]. Because it is not necessary to 

introduce Lagrange multipliers, the Lagrange crisis frequently encountered in constructing 

variational principles can be avoided naturally [21-30]. Recently, many scientists have made a 

lot of efforts and great successes for constructing variational principles in different kinds of 

fields such as fluid dynamics, meteorology, ocean, mathematical biology, solid-state physics, 

optics, and plasma physics, and so forth [21-35]. Non-linear PDE are also used widely and 

commonly to model internal solitary waves, solitons, tsunami wave and so on in the ocean 

and sea [21-35]. In this paper, variational principles are established by the semi-inverse meth-

od [21-35] for the non-linear geophysical KdV (gKdV) equation with Coriolis term, and the 

high-order extended KdV (EKdV) equation, in fractal space and time derivatives [36-42], re-

spectively. Although both KdV-type equations in this paper have been extensively studied for 

a long time by some scientists [43-53], but, up to now, variational principles for them with 

fractal derivatives have not been dealt with. Therefore, finding variational principles for them 

is of great value, and might find lots of applications in numerical simulations and scientific 

researches. 

The fractional partners 

Usually, we can view physical motions and phenomena using two distinctly differ-

ent scales [30, 36, 37]. One is a large scale, where Newton’s calculus is approximately valid 

and the traditional mechanics can be roughly applied. The other scale is a much smaller one, a 

scale of molecule size. Under such a small scale, the media becomes discontinuous, and the 

fractal calculus [38-42] has to be adopted. Equations (1) and (2) are very useful models to de-

scribe oceanic internal solitary waves in continuous media [49-53], however an unsmooth 

boundary will greatly affect the properties of non-linear waves. Therefore, the smooth space 

(X, T) should be replaced by a fractal space (Xβ, Tα), where β and α are fractal dimensions in 

space and time, respectively. In the fractal space, the high-order EKdV equation [44-48], and 

the non-linear gKdV equation with Coriolis term [43] can be modified as following, respec-

tively: 
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where the He’s fractal derivatives are defined as [38-41]: 
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The similar definitions of eqs. (3) and (4) can also be given for the solution function 

( , )T X  in eq. (2), which is the gKdV equation with Coriolis term, in fractal space. For the 

fractal derivatives, we have the following chain rules: 
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In the fractal space, all variables depend upon the scales used for observation and the 

fractal dimensions of the discontinuous boundary. In the definitions given in eqs. (3) and (4), 

ΔX and ΔT are the smallest spatial scale for discontinuous boundary and the smallest temporal 

scale, respectively, for watching the physical phenomena. For example, when we watch the soli-

tary wave on a scale larger than ΔT, a smooth wave morphology is predicted, however, when 

we observe the wave on the scale of ΔT, discontinuous wave morphology can be found [36-37]. 

The fractal derivatives are widely used in applications [36-42] for discontinuous media. 

Variational orinciples for high-order  

EKdV equation with fractal derivatives 

According to the basic properties of previously given fractal calculus, we have the 

following time and space scale transforms [36-42]: 

 t T  (8) 

 x X   (9) 

The high-order EKdV eq. (1) in fractal space becomes: 

 2
1 2 3 4 5 5 0t x xxx x xxxx x xxx x xxu cu b u b uu b u b u u b uu b u u         (10) 

Ocean internal wave is a common natural phenomenon, which is investigated by re-

searchers using some non-linear internal wave models such as the KdV equation [49-53]. 

However, in practical application, some internal solitary waves often have strong non-

linearity, which is inconsistent with the weak non-linear assumption of the KdV equation. In 

addition, due to the change of water depth and stratification in some sea areas, the KdV and 

mKdV equations have great limitations. So, it is more practical to use the high-order EKdV 

eq. (10) to simulate the internal solitary wave in the ocean on the free surface [44-50]. At the 

same time, the high-order EKdV has the ability to simulate the propagation and fission pro-

cess of large amplitude and strong non-linear internal solitary waves. The exact traveling 

wave and soliton solutions, in particular, have been studied extensively [41, 44, 45, 48, 49]. In 

eq. (10), c , 1b , 2b , 3b , 4b  and 5b  are parameters of constant values, which indicate the 
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effects of long wave phase speed, dispersion, non-linearity, high-order non-linearity, and dis-

sipation, respectively.  

In order to find its variational principles, eq. (10) can be transformed into the follow-

ing form: 

 2 32 4
1 3 5 0

2 3
t xx xxx xx

x

b b
u cu b u u b u u b uu

 
       
 

 (11) 

It is obvious that finding Lagrangian representations for the above high-order EKdV 

equation is a non-trivial problem. Additionally, it is necessary to replace the physical field 

( , )u x t  by it’s derivatives of potential fields. According to eq. (11), a potential function Φ can 

be introduced: 

 x u   
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 (12) 

Thus, eq. (11) will be automatically satisfied. It is hoped to construct different varia-

tional principles, according to eq. (11) and the field eqs. (12). 

For establishing the variational principles, whose Euler-Lagrange equations will be 

equivalent to the high-order EKdV equation, we can firstly set a trial-functional in the follow-

ing form: 

 ( , ) ( , , , , )d dxx xxx t xJ u L u u u x t     (13) 

where L is the trial-Lagrange functional. In view of eqs. (11) and (12), we design by the semi-

inverse method [21-30], that the L can be written: 
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where F is an unknown functional of only variable u and its derivatives, to be determined lat-

er. There are many alternative methods for constructing the trial-functional, [21-30]. The great 

merit of the above trial-Lagrange functional eq, (14) is whose stationary condition with re-

spect to Φ leads to the following Euler-Lagrange equation: 
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After introducing eq. (14), eq. (15) is identical to the high-order EKdV eq. (10). 

Subsequently, by calculating the stationary conditions of eq. (14) with respect to u, we obtain: 
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where δF/δu is called He's variational derivative [21] of F. By using eq. (14), eq. (16) can be 

rewritten: 

 2
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It is hoped to find such an F, so that eq. (17) turns out to be the field eq. (12). Ac-

cordingly, after substituting the eq. (12) into eq. (17), we get: 

 
2

3 22 4
3 5

2
2 ( )

2 3
xxx xx

b u bF
u b u b u

u




      (18) 

From eq. (18), unfortunately, we cannot identify F through the calculus of varia-

tions, because of existing the term 32 ,xxxb u so we have to modify the trial-Lagrange function, 

L, into a new form [25]: 
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Again, by calculating the variational derivatives of L with respect to Φ and u, re-

spectively, the new Euler-Lagrange equations can be obtained: 
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In view of eq. (12) and δF/δΦ = 0, eq. (20) becomes: 
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Because eq. (22) should be identical to eq. (11), we must set the coefficient of tu  to 

one. That is: 

 2 1A B   (23) 

After substituting eq. (12) into eq. (21), we obtain: 
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In order to determine the unknown function F successfully, it is necessary to elimi-

nate the term uxxx, whose coefficient must be set to zero in eq. (24). At the same time, accord-

ing to the variational calculus and 3 0b  , we get: 

 1 0A   (25) 

From eqs. (23) and (25), we obtain A = –1 and B = 1. Furthermore: 
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From eq. (26), F can be identified easily: 

 
3 4

2 22 4
1 52

2 3
xx x

b u b u
F cu b uu b uu       (27) 



Cao, X.-Q., et al.: Variational Principles for Two Kinds of … 
2510 THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2505-2515 

or 

 
3 4

2 2 22 4
1 52
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x x
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Finally, we obtain the variational formulations for the high-order EKdV eq. (10), 

which reads: 
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both of which are subject to the constraint equation Φx = u. The established variational princi-

ples are firstly discovered by the semi-inverse method [21-30], and may find many applica-

tions in numerical simulations and researches of the high-order EKdV equation. In the follow-

ing, we will prove the obtained variational principles correct. By making anyone of the previ-

ous functionals, eqs. (29) and (30), stationary with respect to independent functions u and Φ 

severally, we can obtain two different Euler-Lagrange equations: 
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where δΦ and δu is the first-order variation for Φ and u. Substituting Φx = u into eq. (31) 

leads to the high-order EKdV equation, obviously. After substituting Φx = u into eq. (32), we 

can get that:  
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1 2 4 3 5

1 1
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which is identical to the second one of eqs. (12). Hence, successfully, we proved the obtained 

variational principles (29) and (30) correct. In the fractal space (Xβ, Tα), the variational formu-

lation can be written into the new forms: 
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  (34) 

Variational principles for gKdV equation  

with fractal derivatives 

Similarly, using the time and space scale transforms (8) and (9), the gKdV eq. (2) in 

fractal space is transformed into: 

 0

3 1
0

2 6
t x x xxx         (35) 

The KdV-type equations have numerous applications in various branches of science 

and engineering. Various research works have been reported over the recent years related to 

KdV like equations by different authors [43-51]. Here we aimed to study the results of gKdV 

equation with Coriolis term, which represents the impact of the Earth’s rotation on the fluid, 

and is admissible for large-scale ocean waves [43]. Inclusion of Coriolis term 0 x   in 

eq. (35) is helpful to study the effect of Earth’s rotation on the propagation of tsunami waves 

[43]. In order to construct variational principles, eq. (35) can be transformed into the follow-

ing conservative form: 

 2
0

3 1
0

4 6
t xx

x

    
 

    
 

 (36) 

It is obvious that finding Lagrangian representations for eq. (36) is not a trivial prob-

lem. Firstly, it is essential to replace original variable of wave height with the derivative of 

potential field. According to eq. (36), a potential function Φ can be introduced: 

x   

 2
0

3 1

4 6
t xx        (37) 

so that eq. (35) or eq. (36) is automatically satisfied. We will construct the variational princi-

ple, directly from the original eq. (35) and field eqs. (37). 
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Secondly, we can build a trial-functional in the following form by the semi-inverse 

method [26-34]: 

 ( , ) ( , , , )d dxx t xJ L x t        (38) 

where L is the trial-Lagrange functional. In view of eq. (38), it is designed that the L is writ-

ten: 

 2
0

3 1

4 6
t xx xL G     

 
     

 
 (39) 

Specially, G is an unknown functional only of u and it’s derivatives. The remarkable 

merit of the previous trial-Lagrange functional (39) is whose stationary condition with respect 

to Φ leads to the following Euler-Lagrange equation: 

 0
x t

L L L

x t  

    
  

    
 (40) 

In view of eq. (39), eq. (40) is equivalent to the non-linear gKdV eq. (36). Subse-

quently, by calculating the stationary conditions of eq. (39) with respect to η, it leads to: 

 
2

0
xx

L L G

x



  

  
  

 
 (41) 

where δG/δη is called the Frechet's variational derivative [8-35] of G. By using eq. (39), 

eq. (41) can be rewritten: 

 0

3 1
0

2 6
t x x xxx

G
    


      (42) 

It is hoped to find such a G, so that eq. (42) turns out to be the field eq. (37). Ac-

cordingly, after substituting eq. (37) into eq. (42), we get: 

 23

4

G



   (43) 

From eq. (43), we can identify G successfully by the variational calculus, in the fol-

lowing form: 

 
3

4
G


   (44) 

At last, we obtain the following variational principle for the non-linear gKdV equa-

tion [43], which reads: 

 2 3
0

3 1 1
( , ) d d

4 6 4
t xx xJ x t        

  
      

  
  (45) 

which is subject to the constraint of Φx = η. The established variational principles by the 

semi-inverse method [21-35] provide conservation laws and may find lots of applications in 

numerical simulation and scientific analysis of eq. (35). In the following, we will prove the 

obtained variational principles correct. By making the functional (45), stationary with respect 
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to two independent functions η and Φ severally, two Euler-Lagrange equations can be ob-

tained: 

 2
0

3 1
+ 0

4 6
t xx

x

     
 

     
 

 (46) 

 2
0

3 1 3
0

2 6 4
t x x xxx             (47) 

where δΦ and δη is the first-order variation of Φ and η. Equation (46) is the original non-

linear gKdV equation [43], obviously. By substituting Φx = η into eq. (47), we get that:  

2
0

3 1
+ + 0

4 6
t xx       

which is identical to the second one in eq. (37). Hence, successfully, we proved the obtained 

variational principles of the non-linear gKdV equation correct. In the fractal space (Xβ, Tα), 

the variational formulation can be written in a new form: 

 
2

2 3
0 2

3 1 1
( , ) d d

4 6 4
J X T

T X X

 

  

  
      

    
            
  (48) 

Conclusion 

In the third and fourth parts, variational principles have been successfully construct-

ed for the high-order EKdV equation and gKdV equation, respectively, by the semi-inverse 

method [21-35] and designing skillfully trial-Lagrange functionals. Subsequently, the ob-

tained variational principles have proved correct by minimizing the corresponding function-

als. From the results of analysis, it is concluded that the variational principle for the high-

order EKdV equation studied in this paper has two different integral formulations, from which 

the same control equations can be derived. The procedure also reveals that the semi-inverse 

method [21-35] is effective and powerful. According to the obtained variational principles, on 

the one hand, we can study possible solution structures for solitary waves. On the other hand, 

they also provide hints for numerical algorithms, so eqs. (1) and (2) can be solved numerically 

by the variational-based methods. In numerical simulations and ocean engineering, it is of 

great importance to choose an appropriate variational principle according to practical applica-

tions. Our work in the future will focus on the dynamics of soliton in the high-order EKdV 

equation and gKdV equation, by the variational approximation method using the established 

variational principles in this paper. 
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