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The temperature will significantly affect the surface tension of a bubble. By suit-
able control of the inside and outside temperature of the spun bubble, the surface 
tension can be vanished entirely. This zero-tension phenomenon is extremely 
helpful in the bubble electrospinning process. An experiment is designed to study 
the effect of the inside and outside temperature on the nanofibers diameter, and 
the theoretical prediction agrees well with the experimental data. This paper 
sheds a bright light on controlling the spinning process by temperature and hint-
ing at a new trend in the 3-D printing technology.  
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Introduction  

Nanofibers are defined as ductile fibers with properties that their micro partners do 

not have, e.g., high surface energy, high permeability, good thermal property, and electronic 

property, these special properties are also called as nanoeffect of the nanofibers [1]. 

Nowadays, nanofibers can be comprehensively applied to various fields, e.g., bio-

technology, environment, energy, medical treatment, filtration, senor, and other industries. In 

recent decades, nanotechnology has been attracting more and more attention from both aca-

demic and industrial communities, and it is one of the most important issues to produce nano-

fibers industrially.  

As a simple and straightforward fabrication process, electrospinning is widely adopt-

ed in producing nanofibers [2-6], whereas its low output has dramatically hindered its industri-

al applications. To get rid of the shortcoming of the electrospinning, the bubble electrospinning 

was appeared as the most promising technology for mass-production of various functional 

nanofibers [7-13]. It is a milestone in both spinning technology and nanotechnology. 

The bubble electrospinning [7-13] is to use an electrostatic force to overcome the 

surface tension of a polymer bubble, and the temperature inside and outside of the bubble will 

affect the surface tension greatly. As a result, it will also affect the spinning process and fibers 

morphology. In this paper, we will study the effect of temperature on the nanofibers diameter.  

–––––––––––––– 
* Corresponding autothors, e-mails: 2452767789@qq.com, liuhongjun@lut.edu.cn 



Zuo, Y., et al.: Effects of Temperature on the Bubble-Electrospinning Process and … 
2500 THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2499-2503 

Experiment  

The experimental set-up is illustrated in fig. 1, where a water bath controls the tem-

perature of the input air. A long snake-like tube is immersed into the water bath, where the 

temperature is kept unchanged. The temperature 

inside the bubble is controllable, and the envi-

ronment temperature is not controlled in our ex-

periment.  

In our experiment, polyvinyl alcohol (PVA) 

and pure water are used to prepare for a PVA so-

lution with a concentration of 8% as a traditional 

way. The distance between the receptor and the 

solution’s surface is 25 cm, the voltage is 20 kV, 

the humidity is controlled between 55% and 

65%, and the temperature of the water-bath is set 

as 30 ℃, 50 ℃, 70 ℃, and 90 ℃, respectively, and the environmental temperature is 15 ℃ 

and 25 ℃, respectively.  

Figures 2 and 3 show the SEM illustrations of the nanofibers under the environment 

temperature of 15 ℃ and 25 ℃, respectively. Figure 4 shows the effect of the temperature in-

side and outside of the bubble on the nanofibers diameter.  

 

Figure 2. The SEM illustrations of nanofibers under the environmental temperature of 15 ℃;  
the inside temperature is (a) 30 ℃, (b) 50 ℃, (c) 70 ℃, and (d) 90 ℃  

 

 

Figure 1. The bubble electrospinning set-up; 
the inside temperature is controlled by the 
water-bath 
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Figure 3. The SEM illustrations of nanofibers under the environmental temperature of 25 ℃; 
the inside temperature is (a) 30 ℃, (b) 50 ℃, (c) 70 ℃, and (d) 90℃  

Theoretical analysis  

The surface tension of a sphere bubble can 

be expressed: 
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where σ is the surface tension, r – the radius of 

the bubble, and Pi and Po – the pressure of the 

inside and outside of the bubble, respectively.  

According to the state equation of an ideal 

gas, we have: 
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where Ti and To are inside and outside temperature of the bubble, respectively, ρi and ρo – the 

densities of the inside and outside air, respectively, and R – is the universal gas constant.  

 

Figure 4. Effect of the temperature inside and 
outside of the bubble on the nanofibers 
diameter  
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After a simple calculation, we have: 
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By suitable choice of the temperature inside and outside of the bubble, we can have 

the following relationship: 

 i i o o 0T T    (5) 

That means that the bubble surface tension becomes zero, and any small external 

force can break the bubble.   

According to eq. (4), for a fixed environment temperature, a higher Ti implies a 

higher surface tension. That means we require a higher external force to break the bubble. In 

our experiment, the external force is produced by the electrostatic field, and it is kept un-

changed.  

In the spinning process, the total energy produced by the electrostatic field is kept 

unchanged, that is: 

 1 2E E E   (6) 

where E1, E2, and E are the energy needed to overcome the surface tension of the bubble, the 

kinetic energy of the moving jet, and the total energy produced by the electrostatic field, re-

spectively.  

A higher Ti implies a higher E1 to overcome the surface tension of the bubble, as a 

result, we have a lower velocity of the moving jet. According to the mass conservation of the 

moving jet, we have:  

 2πr u Q   (7) 

where r, ρ, u, and Q are moving jet radius, density, velocity, and flow ratio, respectively.  

Equation (7) implies a lower velocity leads to a larger radius, this theoretical predic-

tion agrees well with the experimental observation as given in fig. 4.  

When Ti is a constant, according to eq. (4), a higher To results in a lower surface ten-

sion. By a similar analysis as above, a higher To implies a smaller nanofiber. This prediction 

also sees a good agreement with the experimental data, see fig. 4.  

Discussion and conclusion  

In this paper, we predict a zero-tension of the bubble wall, which is extremely help-

ful in controlling the bubble electrospinning process. The zero-tension phenomenon might be 

used for an ultra-viscous solution. 

In the 3-D printing process [14-17], the paste is always a high viscosity, and a coaxi-

al nozzle, fig. 5, might be a new trend in the 3-D printing technology.  

In the coaxial nozzle, the air with controllable temperature is put into the center 

tube, and a bubble is formed at the nozzle. By suitable control of the temperature, the printed 

bubble has zero surface tension, that means any a small force can push the bubble for printing 

purpose. As the bubble’s surface tension can be exactly controlled with respect to time, this 

coaxial nozzle 3-D printing technology can be developed into the 4-D printing technology in 

the near future.  
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This paper finds a zero-tension phenomenon of a spun bub-

ble in the bubble electrospinning process, e.g., a suitable choice of 

the inside and outside temperature of the bubble, its surface ten-

sion can vanish completely. This zero-tension phenomenon is ex-

tremely helpful in controlling the spinning process. Both the theo-

retical analysis and experimental data imply that a higher inside 

temperature results in a larger diameter of the nanofibers, while a 

higher environment temperature leads to smaller nanofibers. The 

finding is extremely helpful in designing an experimental set-up.  
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Figure 5. A coaxial nozzle in  
the 3-D printing technology  
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