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In this paper, a fractional model is established by using the variational iteration 
method to elucidate the thermal properties of building prevention coating with a 
cocoon-like hierarchy. The fractal hierarchical structure of heat prevention coat-
ing makes the building wall mathematically adapted for an extreme temperature 
environment. This work has inspired the bionic design of protective suits 
and extreme temperature clothing. 
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Introduction 

Many natural biomaterials exhibit structures with more than one length scale, in 

which the elements themselves have structural features to form a hierarchical architecture. 

This structural hierarchy plays an important role in determining bulk materials properties. 

Thus, understanding the effects of hierarchical structure can guide the design of new materials 

with physical properties targeted for specific applications [1]. A cocoon is a natural protein 

polymer composite with unique hierarchical porous micro-structures [2] and has significantly 

superior mechanical performances [3, 4], thus serving as a source of inspiration for high-

performance material designs. Compared with other natural or man-made fibers, silkworm 

cocoons have excellent heat and moisture transfer ability, so they are considered breathable 

[5-8]. In addition, wild silkworm pupa can survive in an extreme temperature environment, at 

either –40 °C or +40 °C, due to some special functions and the configurations of the cocoons 

[9]. The fractal model for heat transfer in layered cocoons has been analyzed with the aid of 

the fractal derivative model [10-12]. Fractional differential models can also model various 

discontinuous problems, Tian and Liu [13] found some interesting properties of the fractional 

Fokas equation. Tian and Wan [14] revealed the solitary wave travelling in a fractal space. 

Tian and Liu [15] found some exact solutions of the fractional differential equations. Wang 

[16] revealed the basic properties of solitary waves travelling through a Cantor set. Wang and 

Zhang [17] studied the periodic solution of the fractional Sasa-Satsuma equation. He et al. 

[18] established a variational principle in a fractal space. Han et al. [19] and Dan et al. [20] 

suggested some effective methods to solve fractional differential equations.  

In this paper, a new fractional derivative is defined through the variational iteration 

method (VIM) [21], and adopted for elucidating the excellent thermal properties of heat pre-
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vention coating with cocoon-like hierarchy for the building's wall. There will be helpful for 

developing and designing multi-functional shoes and clothing. 

Definition on fractional derivative through the  

variational iteration method 

There are many definitions of fractional derivatives, this paper adopts the variational 

iteration algorithm-based definition, and it is called as He’s fractional derivative [22] or the 

fractional derivative in Ji Huan He's sense [23] in the literature. The VIM was first used to 

solve fractional differential equations in [24], and it has been proved to be effective, easy, and 

accurate to solve a lot of non-linear differential problems with the approximate values con-

verging rapidly to the exact solutions.  

According to the VIM [24-27], we get the variational iteration algorithm: 
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We introduce an integration operator In defined by Ji-Huan He [21]: 
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We can define the following fractional derivative [21]: 
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where f0(t) is a known function and its physical explanation will be given in the next section. 

His fractional derivative can be widely used to model various problems arising in porous me-

dia.  

An application 

The cross-section image of the silkworm 

cocoon is presented in fig. 1. From the SEM 

micrograph, it reveals that the cocoon has hier-

archical and porous structures. Silk fibers are 

arranged more closely in the inner layer. The 

outer loose-inner tight structures of silkworm 

cocoons highly guarantee their survival in the 

extreme temperature environment.  

The building is exposed to the natural en-

vironment all year round, and its outer layer 

must have thermal protection to resist high or 

low temperatures. As an application of the new 

fractional derivative, we consider heat preven-

tion coating with a cocoon-like hierarchy for 

the building's wall. Heat-insulating coating is superior properties such as the excellent thermal 

protection. Its cocoon-like hierarchy plays a key role in resisting harsh environments. 

 

Figure 1. The SEM micrograph of  
the cross-sections of the domestic cocoon 
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Using Fourier’s Law of thermal conduction in a fractal porous medium, we have: 

 0D
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with boundary conditions: 

 0(0) , ( ) LL      (5) 

where θ is the temperature, D – the thermal conductivity of heat flux in the fractal medium, 

β – the fractional dimensions of the fractal medium, and ∂β/∂xβ – the fractional derivative de-

fined as [21] from the eq. (3): 
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where θ0(x) can be the solution of its continuous partner of the problem with the same bound-

ary/initial conditions of the fractal partner.  

By the fractional complex transform [28-30]: 
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Equation (4) is transformed into a partial differential equation, which reads: 
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The solution of eq. (9) is: 
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After incorporating the boundary conditions of eq. (5), we obtain: 
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Obviously, this solution has the following notable features: 
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The progressive relationship between continuous and porous media is shown in the 

upper part of fig. 2. The schematic of heat transfer in the lower part of fig. 2. It is found that 

the continuous media can not withstand extreme environments very well due to linear temper-

ature variation. However, the hierarchical porous media has fractal heat transfer property, 
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figs. 2(b)-2(d). The slope at x = 0 depends strongly upon the value of the fractal dimensions β. 

The temperature of its surface for the building wall should be unchanged as much as possible, 

and it requires β > 1. Heat prevention coating with a cocoon-like hierarchy can guarantee β > 

1, fig. 3. line (c). 

  

 
Figure 2. The schematic of heat transfer in the continuous and hierarchic porous media;  
curves (a) black, (b) red, (c) green, and (d) blue represent continuous media, fractal media with one, 
two, and three iterations, respectively 

We fit the temperature changes in the porous medium to get the heat conduction 

curves. The straight-line y1, fig. 4, represents the heat conduction in the continuous medium, 

and α = 1. The curves y2, y3, and y4, fig. 4, mean the heat conduction in the fractal porous me-

dium, respectively. As the order is higher, the heat conduction curve changes more slowly, 

that is, the temperature approaching the inside of the building changes extremely slow. Ac-

cording to eq. (12), it can be seen that the fractal dimensions of porous media of different or-

  

Figure 3. The curves a, b, and c mean  
β = 1, β < 1, and, β > 1, respectively 

Figure 4. Fitting curves for temperature changes in 
both continuous, y1, and porous media, 
 y2 for 1 order, y3 for 2 order, and y4 for 3 order 
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ders has the following relationship: β4 > β3 > β2 > 1. Therefore, when designing the exterior 

wall coating of a building, increasing the effective number of layers and the fractal dimension 

β > 1 of the hierarchical porous media, no matter how the environment temperature changes, 

the temperature close to the interior will change super slowly. 

Conclusion 

A more generalized fractional derivative was derived using the VIM. The fractional 

derivative is an effective method to deal with hierarchic porous media's complicated heat 

transfer problems. The slope at the boundary largely depends upon the fractal structure of heat 

prevention coating with a cocoon-like hierarchy for the surface of the buildings. Increasing 

the effective number of layers and the fractal dimension of the hierarchical porous media can 

make the temperature close to the interior change super slowly. The establishment of heat 

transfer mechanisms for the coating could be beneficial to the bionic design, such as bio-

materials, functional textiles and the aviation industry. 
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