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This paper shows that a spider is a spinning master and a printing expert as well. 
Firstly, a spider can produce different types of silks by controlling the spinning 
process, which is correlated with silk properties. Understanding the natural 
spinning process can greatly help for the improvement of artificial spinning pro-
cesses to control the products’ quality. Here we show the periodic motion of 
muscles connected to the spinnerets plays an important role in controlling the 
spinning process and the silk properties, which leads to a zero resistance of the 
viscous flow in the gland duct and ordered macromolecules in the silk. We antic-
ipate this finding can promote a sophisticated study of other animals’ spinning 
properties and bio-inspired design of artificial spinning processes. Secondly, the 
spider web is not weaved, but it is printed, the process is similar to the modern  
3-D printing technology. Finally, a spider-inspired 4-D printing technology is 
suggested.  

Key words: spider spinning, Bernoulli equation, Pascal principle,  
periodic motion, 3-D printing technology  

Introduction  

Everybody might have seen a spider weaving its web, fig. 1, but scientifically, the 
web is not weaved but printed just like the modern 3-D printing technology [1-9].  

The spider is a spinning master and a 
printing master as well. The former is well-
known, but the latter was never discussed in the 
open literature. This paper will discuss the spi-
der’s spinning and printing abilities.  

Spider’s spinning ability  

Spider’s dragline silk is famous for its 
strength and elasticity. Different spiders pro-
duce different types of silk by suitable control-
ling the spinning process, which is strongly cor-
related with silk properties [10]. The highest 
mechanical strength was explained in [11], and 
–––––––––––––– 
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Figure 1.  The spider web printed by the spider 
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nature inspired artificial fibers have been a hot topic [12, 13], and the spider-inspired bubble 
electrospinning has now been widely used to fabricate nanofibers [13-18].  

The spinneret’s geometry and boundary conditions play an essential role in the spin-
ning process [19]. Yang, et al. [19] showed that the cross-section of a fiber during the spin-
ning process can be controlled by nozzle’s shape, and the mechanism can be well explained 
by the geometric potential theory [20-24]. The animal can adjust the spinneret’s geometry to 
control the silk’s morphology. It was reported that during the spinning process, the anterior 
lateral spinnerets move very fast, 8.5-13 times per second [25], and the motion of the muscle 
connected to the spinnerets were also reported [26, 27], but their roles in the spinning process 
are not clear and there is no a theory to explain the mechanism of these phenomena. This pa-
per gives a complete physical insight into the spinning process.  

It was proved that macromolecules and nano-
particles orientation and distribution during the spinning 
process can be controlled by a long tube [28, 29]. Spider 
has a long gland duct leading the silk gland to the spin-
neret, the velocity distribution across the duct section is 
given in fig. 2, the center has the maximal velocity 
while the boundary has zero velocity.  
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where u0 is the maximal velocity at center and R is the radius of the tube.  
According to the Bernoulli equation: 
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where u is the velocity, P – the pressure, ρ – the density, B – the Bernoulli constant, the 
boundary of the duct has the maximal pressure, and the center sees the minimal pressure. This 
pressure difference is extremely useful for the protein molecules to be pushed into the center 
gradually. As shown in fig. 2, where the segment AB presents a molecule chain, it is obvious 
that uA > uB and PA < PB. The pressure difference pushes gradually the point B into the center, 
and the velocity difference makes the entangled molecules disentangled, and makes the disen-
tangled molecules ordered.  

The protein solution in the duct has a high viscosity, and according to Newton’s law, 
its viscous force can be expressed: 
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where μ is the viscous coefficient.  
It seems that the viscous force can be avoided entirely when the velocity distribution 

is uniform across the duct section. According to eq. (2), we have: 
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Figure 2. The velocity distribution in 
the gland duct 
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In case the pressure is independent of r, we can obtain du/dr = 0, as a result, a zero 
resistance is obtained.  

In order to obtain the zero resistance in the spinning process, the animal has evolved 
to have a special ability. As reported that the two anterior lateral spinnerets vibrate fast with a 
frequency of 8.5-13 per second [25], which means the pressure can be expressed: 

 0 sinP P t    (5) 

where ω is the frequency of the vibration. According to the Pascal law, the pressure is time-
predominance, which means: 

  d 0
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We, therefore, obtain du/dr = 0, and finally τ = 0. So the periodic motion caused by 
the muscles connected to the spinnerets or the glad duct plays an important role in controlling 
the spinning process.  

Spider’s printing ability 

The spider’s web is printed just as the modern 3-D printing technology. The spider 
first prints the radial one from the point 1 to 2 as illustrated in fig. 3, then it returns to the cen-
ter, O, and then from the point O to 3, and from 3 to 4. The process continues until all radial 
lines are formed, the spider comes back the center, and prints axial lines 9-11, until the total 
web is printed. The modern 3-D printing technology, as illustrated in fig. 4, can be exactly 
controlled the printing sequence of the web.  

 
 

Figure 3. The printing sequence of a spider web Figure 4. The 3-D printing technology 

Conclusions 

The spider has been evolved to have the very ability to control the spinning and 
printing processes optimally. This paper unveils the secret of the spider’s spinning and print-
ing abilities. When the spinnerets begin to spinning, a sudden muscle motion is strongly need-
ed to push the macromolecules into the duct center, otherwise, the viscous force is high 
enough to prevent it from spinning.  
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This paper explains an intriguing phenomenon in the spider’s spinning process. The 
finding can be used for the design of various spinnerets for controlling the quality of the spun 
products. The spider’s printing ability can arouse a spider-inspired 4-D printing technology in 
the near future.  
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