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This paper proposes an extended neuron model with time delay. It aims to inves-
tigate the effect of time delay on the dynamical behavior of the system under dif-
ferent conditions. The existence of the Hopf bifurcation of the system and the sta-
bility of its periodic solution are proved by the central manifold theorem. Numer-
ical results show that the system has abundant dynamical performance, including 
chaos, period-adding, and intermittent chaos.  
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Introduction 

The chaos theory describes how a slight change in the starting conditions of a sys-

tem can dramatically affect how it develops. Chaos is usually considered a large-scale phe-

nomenon associated with classical physics, and does not exist in the microscopic quantum 

realm. At any a given time, a dynamical system has a set of states given by a set of real num-

bers, which can be represented by a point in the appropriate state space. In recent years, the 

study of the dynamics of chaotic systems in 2-D parametric space has made great progress in 

theory and practical applications [1, 2]. Junges and Gallas [3] reported high-resolution stabil-

ity diagrams for wide ranges of the main control parameters of the laser described by the 

Lang-Kobayashi model. In particular, they discussed the parameter influence on dynamical 

performance and mapped the distribution of chaotic pulsations and self-generated periodic 

spiking with arbitrary periodicity. 

The mixed-mode oscillations consist of periodic cycles having a number of large 

peaks intercalated by a number of small peaks in one period of the oscillation. In general, the 

chemical oscillations always appear as mixed-mode oscillations, a complex dynamical behav-

ior observed abundantly both numerically and experimentally in numerous prototypical sys-

tems. In biological systems, mixed-mode oscillations have potential relevance for signal en-

coding [4]. The mixed-mode oscillations are typically encountered in parameter domains 

where the dynamics change from periodic to chaotic oscillations. The mixed-mode oscilla-

tions have also been observed in a wide variety of oscillating chemical systems [5], and there 

are many recent reviews about mixed-mode oscillations and their applications [6-9].  
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In this paper, we mainly focused on the following extended Hindmarsh-Rose neu-

ronal oscillator [8]: 
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where the constants a, b, c, d, e, f, g, μ, s, h, v, k, r, and l express the current and conductance 

based dynamical parameters, IDC – the injected current, x – the membrane voltage, y – a fast 

current, z – a slow current since μ  1, w – a slow dynamical process as v < μ  1, μ – the 

ratio of time scales between fast and slow fluxes across the membrane of neuron, and v con-

trols the speed of variation of the slower dynamical process w, particularly the calcium ex-

change between intracellular warehouse and the cytoplasm. Since the oscillation of the slow 

subsystem drives the dynamical behavior of the fast subsystem, there is a time delay in the 

process. Therefore, the time delay needs to be considered. The following system was estab-

lished: 
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The system can be solved analytically by the multiple scales method [10], frequency 

analysis [11-14], He-Laplace method [15], the variational principle [16-20], the homotopy 

perturbation [21, 22], Fourier spectral method [23], and direct algebraic method [24]. For nu-

merical simulation, He-Li’s neural network computation is recommended for its high simula-

tion efficiency [25]. However, the chaotic properties of eq. (2) cannot be fully revealed by the 

above methods, and this paper will apply the central manifold theorem for this purpose. 

The stability of equilibrium point and  

existence analysis of Hopf bifurcation 

In this section, we focus on the system's stability at the point of equilibrium and the 

existence of Hopf bifurcation.  

Make the equilibrium point * * * * *( , , , ),E x y z w  let *( ) ( ) ,x t x t x  *( ) ( ) ,y t y t y 

*( ) ( ) ,z t z t z  *( ) ( ) ,w t w t w   and still note ( ), ( ), ( ),  and ( )x t y t z t w t by x(t), y(t), z(t), and 

w(t). Then the Jacobi matrix corresponding to the system (2) at the origin is: 
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So the corresponding characteristic equation of the system (2) at the origin is: 

   4 3 2
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where 
2
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Then τ is divided into two cases for discussion. 

Case 1: τ = 0 
Theorem 1. The equilibrium point * * * * *( , , , ),E x y z w is locally asymptotically sta-

ble when τ = 0. 

Proof. If τ = 0, then eq. (3) can be reduced to: 
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where 13 3 12 2 2 11 11 11 10 0 0, , , .m m m m n m m n m m n        According to the Routh-Hurwitz 

criterion, the following result can be obtained: 11 0,m  13 0,m  2 2
11 12 13 11 14 13,m m m m m m 

then all roots of eq. (4) have negative real parts, and the system is locally asymptotically sta-

ble at the equilibrium point. 

Case 2: τ > 0 
Theorem 2. The system (2) is asymptotically stable at the equilibrium point 

* * * * *( , , , )E x y z w  when 
*[0, )  and it is unstable when *.    

Proof. Suppose that λ = iω is a root of eq. (3), then we can have: 
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Let: 
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From this, it is easy to obtain: 
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Let 
2 ,v  then eq. (3) will be transformed into: 
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If eq. (6) has a positive root v*, then eq. (5) has a positive root 
*= .v  Then from 

eq. (5) we have: 

* *

2 2 2 2

1
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Theorem 3. For τ > 0, it is easy to obtain that the system (2) is locally asymptotically 

stable at the equilibrium point * * * * *( , , , )E x y z w when 
*[0, );    the system (4) under-

goes a Hopf bifurcation at the equilibrium point * * * * *( , , , )E x y z w when τ = τ*, and from this 

* * * * *( , , , )E x y z w  can be obtained a set of periodic solutions. 

Proof. Consider that H1: eq. (7) has a positive root v10. Then eq. (6) has a positive 

root 10 10= .v  Eliminate sin(ωτ) from eq. (7) and replace ω with ω10, we obtain: 
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with  
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From this, it is possible to obtain: 
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Therefore:  
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where 
4 3 2

1 10 10 3 10 2 10 1 10 0( ) 0.m v v C v C v C v C       Thus, according to the H1 H2 we can 

prove the Theorem 3. 

Local stability and direction of Hopf bifurcation 

In the previous section, we discussed the stability around the equilibrium point and 

the existence of Hopf bifurcations based on the extended Hindmarsh-Rose neuron model. In 

this section, the stability and bifurcation direction of the Hopf bifurcation period solution will 

be further discussed. 
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Theorem 3 (the central manifold theorem).  
– The μ2 determines the direction of Hopf bifurcation: if μ2 > 0 and τk > τ0, the system has a 

supercritical Hopf bifurcation near the equilibrium point; if μ2 < 0 and τk < τ0, the system 

will have a subcritical Hopf bifurcation; there is a bifurcating periodic solution in the cor-

responding time delay.  

– The T2 determines the cycle of bifurcating periodic solutions: if T2 > 0 (T2 < 0), the period 

of periodic solution increases (decreases).  

– The β2 determines the stability of bifurcating periodic solutions: if β2 < 0 (β2 > 0), the pe-

riodic solution is asymptotically stable (unstable) in this central manifold. 

Proof. Initially, the continuous real-valued function space is defined as
5([ 1,0], )C C  and convert system (4) to:  
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Let τ = τ10 + μ where τ is defined by eq. (8). The general function differential equa-

tion can be obtained in the following form: 
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By the Riesz representation Theorem, there exists a 4×4 matrix function with 

bounded variables η(θ, μ), θ Î[–1, 0] such that:  
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In fact, we can choose:  

 10 10( , ) ( ) ( ) ( )( ) ( 1)B C                (11) 

where δ is Dirac function. 

For ϕ = C([–1, 0], R4), define: 
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and a bilinear inner product: 
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where ( ) ( ,0),    A(0) and A*(0) are adjoint operators. We assume 0 10i  are the eigen-

values of A(0), then they are also the eigenvalues of A*(0). Let q(θ) be the eigenvectors of 

A(0) corresponding to eigenvalue 0 10 ,i   and q*(0) be the eigenvectors of A*(0) correspond-

ing to eigenvalue 0 10.i   Then 0 10(0) ( ) ( ),A q i q    * * *
0 10(0) ( ) ( ).A q i q      

Let 0 10

1 2 3( ) (1, , , ) e
iTq v v v
    and

*

0 10* * * *
1 2 3( ) (1, , , ) e .

iTq P v v v
     Further calcula-

tions can be obtained: 

0 10 0 10
2

* * 0 0
1 2

0 0

(2 3 )( ) e e
,

i ibx cx i i g g
v v

i i

     

   

      
 

 
 

0 102
* * 0 0

3
0 0

(2 3 )( ) e

( )( )

i
bx cx i i g

v
vk i i

   

  


   


 

 

and 

0 102
* ** * 0 0
1 2

* 0 0

(2 3 )( ) e
,

2 ( )

i
bx cx i i g d

v v
fx i i

   

   


   

 
 

 

0 102
* * * 0 0 0 0
3

* 0

(2 3 )( )( ) e ( )

2 ( )

i
bx cx i i i vk g i vk

v
fgx i

     

 


     




 



Zhang, J., et al.: Non-Chaos-Mediated Mixed-Mode Oscillations in an … 
THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2427-2438 2433 

By using the same notions as in [9], since: 
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we may choose:  
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By using Hassard et al.'s judgment mark, see in [9], we compute the co-ordinates of 

the center manifold C0 at μ = 0, and have: 
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 (20) 

In summary, we can get the following conclusions about the direction of Hopf bifur-

cation and the stability of periodic solutions. 

Chaos-mediated mixed-mode oscillations  

Every time we make a minor change in the system parameters, the dynamics of the 

system will change in some way. In the Hindmarsh-Rose neuronal oscillator experiment, a 

change in one parameter will often lead to a subsequent change in the other parameters. Thus, 

it is possible to study the effect of multiple pa-

rameters on the system's dynamical behavior 

under simultaneous variation. Additionally, the 

dynamical behavior of the system becomes 

richer with the addition of time delay. In this 

section, the parameters IDC and v will be chosen 

to study the variation of the periodic cluster 

discharge behavior of the system at different 

time delays. 

When varying the parameter v with stimu-

lus current IDC, where IDC is –0.5v + 3.1, a bi-

furcation diagram about parameter v can be ob-

tained as in fig. 1. It can be observed that as the 

parameter v gradually decreases, the periodic 

cluster discharge increases from period-4 in 

succession, accompanied by the phenomenon of doubled-cycle bifurcation. It can be found 

that the conversion process of every two-cycle cluster discharge is accompanied by a chaotic 

phenomenon, which is called chaos-mediated mixed-mode oscillations.  

 

Figure 1. Bifurcation diagram of the system (1) 
vs. the parameter v 
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Figure 2. Periodic bifurcation diagram with chaos; (a) τ = 0.5, (b) τ = 1, (c) τ = 5, and (d) τ = 10 

A similar phenomenon is observed in the two-parameter bifurcation diagram. Keep 

IDC be –0.5v + 3.1, when parameter v is variable, which is corresponding to the blue dotted 

line in fig. 2(a). It can be seen that when the parameter v is 0.07, the system is a period-4 clus-

ter discharge. Similar to the phenomenon in fig. 1, as the parameter v decreases along the di-

rection of the blue dashed line, the system (2) enters the chaotic phenomenon via period 4 and 

then evolves into the period 3 state, followed by the octave bifurcation and chaotic phenome-

non. Afterwards, many typical nonlinear behaviors take place, involving period 4 motion, oc-

tave state, chaotic phenomenon and so on, and finally it stops at period-13.  

In figs. 2(a)-2(d), the time delay increases sequentially. It can be found that spike 

discharges and period-2 cluster discharges gradually disappear, and high-period cluster dis-

charges gradually occupy the main body. It can be seen that when the time hysteresis is large 

enough, the whole area will be occupied by high period and the chaotic phenomenon will dis-

appear and become non-chaos-mediated mixed-mode oscillations.  

Non-chaos-mediated mixed-mode oscillations 

In the previous section, chaos-mediated mixed-mode oscillations was discussed, and 

this section will discuss the case where there is no chaos window. From fig. 3, it can be ob-

served that as the stimulation current increases, the number of periodic cluster discharges in-

creases sequentially ranging from period-4, period-5, period-6 to period-13. Further, a two-

parameter plane with respect to the parameters, I, and, v, is constructed. As can be seen in fig. 

4, as the time delay increases, the high-period cluster discharge behavior gradually disappears 

in the blue rectangular region. 
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Figure 3. Bifurcation diagram of the system (1) vs. the parameter I 

 

Figure 4. Periodic bifurcation diagram with chaos; (a) τ = 0.5, (b) τ = 5, (c) τ = 10, and (d) τ = 15 

Conclusions 

In this paper, we focus on the extended Hindmarsh-Rose neuronal oscillator and 

analyze the effect of different parameters on the dynamical behavior of the extended Hind-

marsh-Rose neuronal oscillator under the influence of time delay through single-parameter 
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and two-parameter bifurcation diagrams. The first gives a classical chaos-mediated mixed-

mode oscillation in which the interval between different periodic oscillations is always sepa-

rated by a chaotic window in which the lower-period low-discharge mode gradually disap-

pears and the higher-period generation mode dominates as the time delay increases. In addi-

tion, a non-chaotic-mediated mixed-mode oscillation phase is proposed in which a chaotic 

window does not exist, after which the motion states related to the system experiences period-

5, period-6 and period-7 till the end of period-14. As the time delay increases, the resting 

states' region expands and the high-period discharge pattern then moves backward. This paves 

the way for future studies to understand abnormal neuronal discharges and control discharge 

patterns. 
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