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In order to efficiently solve the problem of optimization of the micro-channel heat 
sink, an optimization strategy combining intelligent algorithms and CFD was 
proposed. The micro-channel heat sink with the trapezoidal cavity and sol-
id/slotted oval pins was proposed to enhance heat transfer. The aspect ratio, dis-
tance from the center of the oval pin to the center of the cavity, and slot thickness 
were design variables. The thermal resistance and pumping power of the micro-
channel heat sink were objective functions. Within the selected range of design 
variables, thirty groups of uniformly sampled sample points were obtained by the 
Latin hypercube experiment. The 3-D model was established by SOLIDWORKS 
software, and the numerical simulation was carried out by using FLUENT soft-
ware. The genetic algorithm optimized back propagation neural network to con-
struct the prediction model, and the simulated data of Latin hypercube sampling 
were trained to obtain the non-linear mapping relationship between design vari-
ables and objective functions. The optimal combination of structural parameters 
of the micro-channel heat sink was obtained by optimization of the genetic algo-
rithm, which was verified by numerical simulation. The results show that the op-
timization scheme was suitable for getting the optimal value of the structural pa-
rameters of the micro-channel heat sink, which provided a reference for the op-
timal design of the micro-channel heat sink. 

Key words: micro-channel heat sink, pumping power, thermal resistance,  
Latin hypercube sampling, GA-BP neural network, genetic algorithm  

Introduction 

With the rapid development of microelectronics technology, the power density of 

electronic devices is increasing, which poses a significant challenge to the thermal manage-

ment of 3-D integrated circuits [1, 2]. The micro-channel heat sink has good heat transfer per-

formance, so it is widely used in heat dissipation design of electronic devices, such as micro 

fins, micro pits, micro ribs and so on [3-7]. The results show that these heat transfer structures 

not only enhance the heat transfer performance but also increase the pumping power. In order 

to reduce the increase of pumping power and improve heat transfer performance, Steinke et al. 
[8] and Kuppusamy et al. [9] proposed a micro-channel heat sink with secondary flows, which 

enhances the heat transfer performance with minor pumping power and thermal resistance. Lin 
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et al. [10] suggested the wavy micro-channel heat sink with changing wavelength or/and am-

plitude along the flow direction can reduce thermal resistance and pumping power. Fan et al. 
[11] studied a novel cylindrical oblique fin micro-channel heat sink, and the results show that 

the heat transfer performance of the cylindrical oblique fin micro-channel heat sink over con-

ventional straight fin mini channel heat sink. Rajabi et al. [12] studied the effect of the micro-

channel heat sink with sectional oblique fins on heat transfer and flow streamline distribution. 

Chuan et al. [13] proposed solid fins instead of porous fins to reduce the pressure drop of the 

micro-channel heat sink. It can be seen from the literature that the micro-channel heat sink with 

a secondary flow channel can significantly improve the heat transfer effect. 

Good design of micro-channel heat sink structure can effectively improve heat trans-

fer performance. In engineering applications, geometric structure parameters of the micro-

channel heat sink can be effectively optimized by numerical calculation methods to improve 

heat transfer performance and reduce pumping power. Shi et al. [14] studied the optimization 

of a single-layer nanofluid-cooled micro-channel heat sink with a rectangular cross-section 

based on a multi-objective to get minimize the thermal resistance and pumping power of the 

micro-channel heat sink. Ansari et al. [15] performed optimization of the micro-channel heat 

sink with a grooved structure by a multi-objective evolutionary algorithm. Xia et al. [16] com-

bined the multi-objective evolutionary algorithm (MOEA) with CFD to optimize the geometry 

of micro-channel heat sink with arc-shaped grooves and ribs. 

Genetic algorithm (GA) and back propagation (BP) neutral network were widely ap-

plied in certain engineering fields, such as the shape design of drones, automobile structure 

optimization and so on, but it is less in the optimization design of micro-channel heat sink. 

Han et al. [17] took the shape design of drones as the research object. The hybrid GA-BP 

model was constructed by optimizing BP neural network with the GA to evaluate and screen 

out scientific design schemes effectively. Zhang et al. [18] proposed a BP neural network op-

timization method based on the GA to speed the training of BP neural network to overcome 

BP neural network disadvantage of being easily stuck in a local minimum. Tam et al. [19] ap-

plied the hybrid model including BP neural network and GA to estimate the nanofluids densi-

ty. Rahimi et al. [20] used ANN and GA to predicate the flow characteristic in serpentine mi-

cro-channels. Therefore, this paper studied GA optimized the BP neural network to construct 

a GA-BP neural network model, overcome the local optimization problem of BP neural net-

work, and improved the training efficiency of neural network on thermal resistance and pump 

power, it has certain novelty in the application of the optimization of the micro-channel heat 

sink.  

In this paper, the micro-channel heat sink with trapezoidal cavity and solid/slotted 

oval pins was studied, the aspect ratio, AR, distance from the center of the oval pin to the cen-

ter of the cavity, X, and slot thickness, t, were design variables. The thermal resistance and 

pumping power of the micro-channel heat sink were objective functions. Latin hypercube 

sampling was designed, and the numerical simulation was carried out by using the FLUENT 

software. The GA optimized the BP neural network to construct a GA-BP neural network 

model with high accuracy. Then the GA was used for global optimization to obtain the opti-

mal combination of parameters of the micro-channel heat sink so that the thermal resistance 

and pumping power of the micro-channel heat sink reach optimal, respectively. It provides an 

essential reference for the structural parameter design of the micro-channel heat sink with bet-

ter comprehensive heat transfer performance. 
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Micro-channel heat sink model  

Micro-channel heat sink structure and description 

Alfellag et al. [21] proposed the micro-channel heat sink with trapezoidal cavity and 

solid/slotted oval pins as the reference design channel and optimized its structural parameters. 

The schematic diagram and geometrical parameters of the present study are illustrated in 

figs. 1(a)-1(c). The geometric parameters of the micro-channel heat sink are shown in tab. 1. 

The overall structure of the micro-channel is shown in fig. 1(a). The length, Ls, height, Hs, and 

width, Ws of the computational domain are 10 mm, 0.35 mm, and 0.3 mm, respectively, corre-

sponding to that proposed by [21], as shown in fig. 1(b). The height, hs, and width, Wc, of a 

single micro-channel heat sink are 0.2 mm and 0.1 mm, respectively, corresponding to that 

proposed by [21], as shown in figs. 1(b) and 1(c). The single micro-channel heat sink has two 

cavities and two oval pins along the axial direction of the flow. The top of the cavity length, a, 

bottom length, b, and height, c, are 0.2 mm, 0.1 mm, and 0.08 mm, respectively, correspond-

ing to that proposed by [21], as shown in fig. 1(c). The small diameter, d, of the oval pins re-

mains constant at 0.04 mm, while the large diameter, D, is changeable based on the AR, which 

is defined as D/d. The AR changes in the range of 1.25-2.75. The distance from the micro-

channel heat sink entrance to the cavity center, s, is 3 mm, while the distance between the 

two-cavity centers, r, is 4 mm, corresponding to that proposed by [21], as shown in fig. 1(b). 

The two inclined grooves on the oval pin are used with a tilt angle of 8° with the axial direc-

tion, as shown in fig. 1(c). The slot thickness, t, is changed in the range of 0.008-0.015 mm. 

The distance from the center of the oval pin to the center of the cavity is defined as X, which 

changes in the range of 0-0.006 mm. In the paper, the substrate of the micro-channel heat sink 

is made of aluminum, and the constant wall heat flux, which is 1000 kW/m2, was supplied to 

the base bottom. The fluid is water. The inlet speed and temperature are 8 m/s and 300 K. 

Table 1. Geometric parameters of the micro-channel heat sink  

Model calculation and processing 

In order to simplify the problem, the following assumptions are considered for heat 

transfer and fluid flow characteristics in the micro-channel heat sink: cooling fluid is steady 

laminar flow, and the fluid is incompressible and single-phase flow. The thermophysical prop-

erties of fluids and solids do not change with temperature. The effects of gravity, buoyancy and 

thermal radiation are ignored. Based on the assumptions, the flow and heat transfer process of 

fluid should follow certain conservation equations, which governing equations are [1]:  

 u 0   (1) 

 (u )u   2uP     (2) 

Parameters Value [mm] Parameters Value [mm] Parameters Value [mm] 

Hs 0.35 S 3 d 0.04 

Ws 0.3 R 4 X 0-0.06 

Ls 10 A 0.2 Wf/2 0.1 

hs 0.2 B 0.1 D 0.05-0.11 

Wc 0.1 C 0.08 T 0.008-0.015 



Jiang, M., et al.: Optimization of Micro-Channel Heat Sink Based on … 
182 THERMAL SCIENCE: Year 2023, Vol. 27, No. 1A, pp. 179-193 

 fu( ) ( )pc T T     (3) 

where u  is the velocity matrix, P – the pressure, T – the temperature, ρ – the fluid density,  

μ – the viscosity, λf – the thermal conductivity of the fluid, and cp – the specific heat of cool-

ant. 

 

 

Figure 1. (a) Schematic diagram of overall micro-
channel structure, (b) schematic diagram of single 
micro-channel structure, and (c) geometric 

variables of the trapezoidal cavity, the micro-
channel heat sink, and the oval pin 

For the solid substrate, the energy equations can be expressed:  

 
2

s 0T    (4) 

where λs is the thermal conductivity of the solid. 

The CFD simulation analysis was carried out for the micro-channel heat sink by 

varying oval pin parameters such as X, AR, and t. Using single-phase liquid water as coolant. 

The whole solution process was a steady-state. The SIMPLE algorithm was used to deal with 

the pressure-velocity coupling. Convergence criteria scaled residuals for continuity, momen-

tum, and energy equations are less 10−4, 10−5, and 10−6, respectively. 

Grid independence test 

For the micro-channel heat sink with the trapezoidal cavity and solid/slotted oval 

pin, the tetrahedral grid was used to divide, as shown in fig. 2. A non-uniform grid was used 

for the oval pin. The effect of the grid density on the computational results is evaluated by 

simulating six different grid numbers, when X, AR, and t are 0.039 mm, 1.675, and 0.013 mm, 

respectively, and the inlet speed is 8 m/s. The highest value of Reynolds number at the inlet of 

the micro-channel in the current study is 1200. The comparison results of six different grid 

numbers are shown in tab. 2. The percentage error for pressure drop and maximum tempera-

ture between the mesh numbers of 1964170 and 3928340 was less than 0.17% and 0.05%, re-

spectively. Therefore, the mesh numbers of 1964170 were adopted for simulation analysis in 

the current study to save the number of grids and computational time. 
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Table 2. Meshing contrast  

 

Genetic algorithm optimized back 

propagation neural network  

prediction model formation 

Latin hypercube sampling 

Latin hypercube sampling (LHS) is a ran-

dom sampling experimental design method, 

which was proposed by McKay et al. [22]. It 

can select a group of sample points by sampling 

in the space, so that the obtained sample points 

can be evenly distributed in the area. In order to 

get the non-linear mapping relationship between 

design variables and objective functions, it is 

necessary to conduct an experimental design. 

The design of LHS can make sample points 

evenly distributed in the sampling interval and 

provide a high-precision original database for 

GA-BP neural network model training. The de-

sign variables are X, t, and AR, which change in 

the range of 0-0.06 mm, 0.008-0.015 mm, and 

1.25-2.75, respectively. Thirty groups of sample points were evenly selected within the scope 

of the design variables. The distribution of LHS sampling points is shown in fig. 3. The param-

eters combination of thirty groups of sample points was numerically simulated by FLUENT 

software to establish the original database of the GA-BP neural network, as shown in tab. 3. 

 

Figure 3. Distribution of Latin hypercube sampling points in sampling space;  

(a) X-t, (b) X-AR, and (c) AR-t  

Number of elements Tmax [K] ∆P [KPa] Tmax error [%] ∆P error [%]  

654723 316.69 314.29 0.25 3.03 

982085 317.03 309.53 0.15 1.46 

1964170 317.49 305.06 criterion 

2455212 317.56 304.74 0.02 0.10 

2805957 317.62 304.61 0.04 0.15 

3928340 317.66 304.53 0.05 0.17 

 

Figure 2. Meshing of the micro-channel heat 
sink with cavity and pin  
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Table 3. Latin hypercube sampling points and numerical simulation results  

Case no. X [mm] AR t [mm] Rt [KW–1] Pp [W] 

1 0.040 2.375 0.011 5.5500  9.1523·10–4 

2 0.005 2.400 0.011 5.7500  6.2196·10–4 

3 0.048 2.575 0.010 5.4367  1.2075·10–3 

4 0.009 1.400 0.008 5.8933  5.1876·10–4 

5 0.017 2.475 0.012 5.6933  6.8889·10–4 

6 0.023 1.425 0.009 5.9200  5.3726·10–4 

7 0.028 2.500 0.015 5.6867  7.0983·10–4 

8 0.043 1.900 0.014 5.7133  6.8330·10–4 

9 0.047 2.675 0.009 5.4033  1.3184·10–3 

10 0.053 2.000 0.008 5.4500  1.1186·10–3 

11 0.022 2.625 0.008 5.5733  8.7991·10–4 

12 0.039 1.675 0.013 5.8300  6.1012·10–4 

13 0.035 1.625 0.010 5.7567  6.0787·10–4 

14 0.019 1.875 0.013 5.8800  5.5302·10–4 

15 0.051 2.750 0.015 5.5967  9.6957·10–4 

16 0.031 2.075 0.011 5.6767  6.9080·10–4 

17 0.056 1.725 0.014 5.7233  7.6200·10–4 

18 0.002 1.850 0.014 5.8900  5.3173·10–4 

19 0.026 1.500 0.012 5.9000  5.3702·10–4 

20 0.026 2.000 0.012 5.7633  6.1494·10–4 

21 0.037 1.475 0.012 5.8567  5.7301·10–4 

22 0.054 1.275 0.011 5.8133  6.7042·10–4 

23 0.014 1.550 0.015 6.0433  5.1228·10–4 

24 0.045 2.350 0.010 5.5100  1.0341·10–3 

25 0.059 2.150 0.011 5.4633  1.1324·10–3 

26 0.012 1.750 0.012 5.9067  5.3150·10–4 

27 0.002 1.300 0.010 5.9800  5.1531·10–4 

28 0.006 2.125 0.009 5.7567  5.7210·10–4 

29 0.015 2.200 0.013 5.7967  5.9428·10–4 

30 0.033 2.300 0.014 5.6933  7.1539·10–4 
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Genetic algorithm optimized back propagation neural  

network model establishing and training 

The BP neural network is a multilayer feed-forward network trained by an error BP 

algorithm. It is widely used in engineering to deal with non-linear and complex systems. It 

can be tacking non-linearity and mapping input-output information [23]. The network struc-

ture is composed of the input layer, hidden layer, and output layer. Layers are connected by 

weights. The neurons in layers are not connected. The weight and threshold of the BP neural 

network have a significant influence on the prediction accuracy of the neural networks. In or-

der to reduce the prediction error of the BP neural network and improve the operation speed 

of the BP neural network, the BP neural network was optimized by a GA to establish the GA-

BP neural network model. 

The GA-BP neural network has three 

parts: BP neural network, GA optimizes 

weights and thresholds, and BP neural network 

prediction. In this paper, the GA-BP neural 

network was used to solve the optimization 

problem. The BP neural network model is 

shown in fig. 4. The input layer has three nodes, 

which were X, AR, and t, respectively. The 

number of hidden layers was 5. The output lay-

er had two nodes, which were Rt and Pp. The 

flow chart about the GA-BP neural network al-

gorithm was shown in fig. 5. The mean square error function which was trained by BP neural 

network was used for the fitness function of the genetic algorithm. The initial population 

number was 35, the maximum iteration number was 100, the crossover probability was 0.3, 

and the mutation probability was 0.2. 

 

Figure 5. The GA optimized BP neural network algorithm flow 

 

Figure 4. The BP neural network model 
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Twenty-two groups data were selected as network training samples, and the remain-

ing eight groups data were used as test samples to test the accuracy of the GA-BP neural net-

work model. In network training, the parameters of the GA-BP neural network are shown in 

tab. 4. The learning rate is 0.1, training times are 100, and training objectives are 0.00001. 

Trainlm is the training function, Tansig is the hidden layer transfer function, and Purelin is the 

output layer transfer function. Mean square error (MSE) is the performance function. In order 

to ensure the precision of network training, the input and output data are normalized and de-

normalized by the normalized function mapminmax of MATLAB software, which is defined:  

 * min

max min

 
y y

y
y y





 (5) 

where y and y* are the values before and after normalization, respectively. ymin and ymax are 

minimum and maximum values in the sample data, respectively. 

Table 4. Parameters of GA optimized BP neural network  

 

The output of expected values and predicted values about the BP neural network and 

GA-BP neural network is shown in fig. 6. The results show that the GA-BP neural network is 

better than BP neural network in predicting Rt and Pp. The data comparison between expected 

and predicted values of Rt and Pp is shown in tab. 5. In order to accurately analyze the value 

of the prediction error, the relative errors, Er, of Rt, and Pp are calculated by: 

 r  100%
m n

E
n


  (6) 

where m and n are predicted values and expected values, respectively. 

   

Figure 6. Expected and predicted values output of BP neural network and GA optimized BP neural 

network; (a) thermal resistance and (b) pumping power  

Parameters Value Parameters Value 

Learning rate  0.1 Training function  Trainlm  

Training times  100 Hidden layer transfer function  Tansig  

Training objectives  0.00001 Output layer transfer function  Purelin  

Performance function  Mean square error (MSE)  
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Table 5. Data comparison between expected and predicted values 

Case 
no. 

Rt [KW-1] Pp [W] 

BP predicted GA-BP predicted Expected BP predicted GA-BP predicted Expected 

23 5.9100 5.9916 6.0433 5.2737·10–4 5.2982·10–4 5.1200·10–4 

24 5.4870 5.4862 5.5100 1.0533·10–3 1.0405·10–3 1.0340·10–3 

25 5.4239 5.4893 5.4633 1.1310·10–3 1.1206·10–3 1.1320·10–3 

26 5.8854 5.9051 5.9067 5.1440·10–4 5.3928·10–4 5.3100·10–4 

27 5.7697 5.9464 5.9800 4.6856·10–4 5.2752·10–4 5.1500·10–4 

28 5.7551 5.7426 5.7567 5.3491·10–4 5.6973·10–4 5.7200·10–4 

29 5.7481 5.7898 5.7967 6.0237·10–4 6.1257·10–4 5.9400·10–4 

30 5.6861 5.6636 5.6933 7.0072·10–4 7.1384·10–4 7.1500·10–4 

The relative errors between expected values and predicted values about thermal re-

sistance of BP neural network and GA-BP neural network are 0.028%-3.517% and 0.027%-

0.855%, respectively, as shown in fig. 7(a). The relative errors between expected values and pre-

dicted values about pumping power of the BP neural network and GA-BP neural network are 

0.088%-9.017% and 0.162%-3.480%, respectively, as shown in fig. 7(b). The results show that 

GA-BP neural network has more accurate prediction output and high fitting degree, which effec-

tively improves the prediction ability. The GA-BP neural network model can be used to reflect 

the complex nonlinear mapping relationship between the structural parameters of the micro-

channel heat sink and objective functions. It has certain accuracy and generalization, and can be 

applied to predicting thermal resistance and pumping power of the micro-channel heat sink. 

   

Figure 7. Relative errors between expected and predicted values output of BP neural network and GA 

optimized BP neural network; (a) thermal resistance and (b) pumping power  

Objective function optimization based  

on genetic algorithm 

Thermal resistance and pumping power are two important indexes to evaluate the 

performance of the micro-channel heat sink. Therefore, the thermal resistance and pumping 

work are established as the objective functions, which are defined: 
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s max f,in

s
t

T T
R

qA


   (7) 

 chpP uNA P    (8) 

where Ts,max, Tf,in, u, As are maximum temperature, inlet temperature, inlet velocity, and bot-

tom area of the micro-channel heat sink, respectively, q – the heat flow density, Ach – the 

cross-sectional area of a single micro-channel heat sink, N – the total number of the micro-

channel, ∆P – the pressure drop of micro-channels, which is defined:  

 in out  P P P    (9) 

where Pin and Pout are the pressure at the inlet and outlet of the micro-channel heat sink, re-

spectively. 

The mathematical model of the optimization problem is described:  

 1 tmin ( ,  ,  ) min[  ( ,  ,  )]f X AR t R X AR t   (10) 

 2 pmin ( ,  ,  ) min[ ( ,  ,  )]f X AR t P X AR t   (11) 

s.t.  0 0.06X     

 1.25 2.75AR   

 0.008 0.015t   

The Reynolds number is defined:  

 m h

f

Re
u D


   (12) 

where um is the fluid velocity and Dh is the hydraulic diameter of the micro-channel:  

 s
h

s

2 c

c

h W
D

h W



  (13) 

The thermal resistance and pumping work are predicted by GA-BP neural network, 

and the prediction results are taken as the individual fitness of the GA. Then the objective 

functions are optimized by selection, crossover, and mutation to obtain the objective functions 

optimum solution and structure parameters of the micro-channel heat sink corresponding to 

the optimal solution. In the GA, the initial population number is 10, the maximum iteration 

number is 40, the crossover probability is 0.3, and the mutation probability is 0.1. The global 

optimization fitness curve of the GA is shown in fig. 8. The results show that after 40 itera-

tions of optimization, the thermal resistance fitness value converges to 5.38 K/W, and the 

pumping power fitness value converges to 4.96·10–4 W.  

Results and discussions 

The comparison between the predicted and numerical simulation verification values 

of corresponding structural parameters after optimization are shown in tabs. 6 and 7. When X 

is 0.056 mm, AR is 2.447, and t is 0.009 mm, the predicted value and numerical simulation  



Jiang, M., et al.: Optimization of Micro-Channel Heat Sink Based on … 
THERMAL SCIENCE: Year 2023, Vol. 27, No. 1A, pp. 179-193 189 

   

Figure 8. Global optimization fitness curve of GA; (a) thermal resistance fitness curve, (b) pumping 
power fitness curve  

verification value of the thermal resistance are 5.38 K/W and 5.02 K/W, respectively, and the 

relative error is 6.69%. When X is 0.003 mm, AR is 1.254, and t is 0.013 mm, the predicted 

value and numerical simulation verification value of pumping power are 4.96·10–4 W and 

5.19·10–4 W, respectively, and the relative error is 4.43%. It is shown that the GA-BP neural 

network proposed in this paper has high precision prediction performance. 

Table 6. Optimization results of thermal resistance based on GA and numerical simulation verification 

Table 7. Optimization results of pumping power based on GA and numerical simulation verification 

Comparison and verification of CFD simulation experiment results are shown in 

tabs. 8 and 9. It compared three different cases. They were before optimization, after optimi-

zation, and Alfellag’s design [21], respectively. The results showed that the thermal resistance 

of the simulation results after optimization was reduced by 13.89% and 9.55%, respectively, 

compared with that before optimization and Alfellag’s design. The pumping power of the 

simulation results after optimization was reduced by 14.92% and 8.63%, respectively, com-

pared with that before optimization and Alfellag’s design. The results show that the thermal 

resistance and pumping power of the micro-channel heat sink can be optimized by GA-BP 

neural network, respectively. 

The friction coefficient can reflect the resistance of the micro-channel to fluid-flow. 

The greater the friction coefficient, the greater the fluid resistance of the micro-channel, and 

vice versa. Nusselt number can reflect the intensity of convective heat transfer. The larger the 

Nusselt number, the stronger the convective heat transfer intensity of the micro-channel, and 

vice versa. In order to evaluate the heat transfer performance of the optimized micro-channel 

Parameters X [mm] AR t [mm] Predicted value [KW–1] 
Numerical simulation 

[KW–1] 
Relative error 

[%] 

Value 0.056 2.447 0.009 5.38 5.02 6.69 

Parameters X [mm] AR t [mm] Predicted value [W] 
Numerical simulation 

[W] 
Relative error 

[%] 

Value 0.003 1.254 0.013 4.96E-04 5.19E-04 4.43 

javascript:;
javascript:;
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Table 8. Comparison between optimization results and numerical simulation about thermal resistance 

Table 9. Comparison between optimization results and numerical simulation about pumping power 

heat sink, the friction factor and Nusselt number are used to evaluate the intensity of convec-

tive heat transfer and flow resistance of the optimized micro-channel heat sink, respectively, 

which are defined in eqs. (14)-(16) [21]: 

 h

f

Nu
hD


  (14) 

 s

ch  ch  s f( )

qAQ
h

NA T NA T T
 

 
  (15) 

 h

2
s in

2 pD
f

L U


   (16) 

where Nu, Dh, and h are Nussert number, the hydraulic diameter of the micro-channel, and 

convective heat transfer coefficient, respectively. While Ts, Tf, and f are the average tempera-

ture of the heated bottom, the average temperature of the fluid, and the friction factor of the 

micro-channel heat sink. 

The nephogram of the temperature field for three different cases is shown in fig. 9. 

Compared with the before optimization and Alfellag’s design, the maximum temperature of the 

micro-channel heat sink after optimization is reduced by 5.51% and 3.71%, respectively. The 

ratio of Nussert number of the micro-channel heat sink after optimization to that before optimi-

zation was 1.09. The ratio of Nussert number of the micro-channel after optimization to that 

Alfellag’s design was 1.10. It shows that the heat transfer performance of the micro-channel 

heat sink after optimization (X = 0.056 mm, AR = 2.447, and t = 0.009 mm) was improved. The 

nephogram of the pressure distribution for three different cases is shown in fig. 10. Compared 

with the before optimization and Alfellag’s design, the pressure drop of the micro-channel heat 

sink after optimization is reduced by 14.86% and 8.47%, respectively. The ratio of the friction 

factor of micro-channel heat sink after optimization to that before optimization was 0.73. The 

ratio of the friction factor of the micro-channel after optimization to that Alfellag’s design was 

0.79. It shows that the friction factor of the micro-channel heat sink after optimization (X = 

0.003 mm, AR = 1.254, and t = 0.013 mm) was reduced. The results show that GA-BP neural 

network can be effectively applied to the optimal design of micro-channel heat sink. 

Case X [mm] AR t [mm] T [K] T [℃] Rt [KW–1] 

Before optimization 0.039 1.675 0.013 317.490 44.340 5.83 

After optimization 0.056 2.447 0.009 315.046 41.896 5.02 

Alfellag’s design 0.030 1.250 0.008 316.662 43.512 5.55 

Case X [mm]  AR  t [mm]  ∆p [KPa]  Pp [W]  

Before optimization 0.039 1.675 0.013 305.058 6.10·10–4 

After optimization 0.003 1.254 0.013 259.741 5.19·10–4 

Alfellag’s design 0.030 1.250 0.008 283.792 5.68·10–4 
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Figure 9. Nephogram of temperature field; (a) before optimization,  
(b) after optimization, and (c) Alfellag’s design  

 

Conclusions 

This paper takes the micro-channel heat sink with the trapezoidal cavity and sol-

id/slotted oval pins as studied. It presents an optimization strategy combining intelligent algo-

rithm (GA-BP neural network) and CFD. The thermal resistance and pumping power were 

chosen as objective functions. The experiment results show that the GA-BP neural network has 

high prediction accuracy for the resistance and pumping power of the micro-channel heat sink. 

The GA was used for global optimization to obtain the optimal combination of parameters of 

the micro-channel heat sink, so that the thermal resistance and pumping power of the micro-

channel heat sink can reach optimal, respectively. Hence, optimizing the micro- channel heat 

sink based on GA and BP neural network can improve the heat transfer performance of the 

micro-channel heat sink. This optimization method provides the engineering reference for the 

optimization design of structural parameters of the micro-channel heat sink. 
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Figure 10. Nephogram of pressure distribution; (a) before optimization, 

(b) after optimization, and (c) Alfellag’s design  
(for color image see journal web site) 
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