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The flow and heat transport of a viscous fluid contained in a square cavity have 
been extensively studied using parametric analysis. Lattice Boltzmann method is 
used to simulate fluid-flow in a square lid-driven cavity with a square-shaped ob-
stacle in the cavity’s centre. The cavity’s top wall generates flow that moves at a 
constant speed in its own plane and is maintained at a higher temperature than the 
bottom wall. Reynolds number, Rayleigh number, Prandtl number, Grashof 
number, and Richardson number are the primary parameters used in this study. 
The relevance of natural and forced convection, contributions of conduction, and 
convection to total heat transfer are estimated. The influence of the temperature of 
the obstacle on the velocity and temperature of the fluid is also being investigated. 
When, Ri ≪ 1, the temperature of the obstacle has almost negligible influence on 
fluid velocity, the fluids are well mixed, and temperature fluctuations are minor in 
the bulk of the cavity interior. When, Ri ≫ 1, the obstacle’s temperature, has a 
considerable impact on fluid velocity, much of the fluid in the cavity’s middle and 
bottom regions remains stationary. These regions have a vertically linear tem-
perature distribution. Further studies were carried out to investigate how the 
Prandtl number influenced the fluid’s temperature. The findings are presented as 
contour plots of velocity and temperature, streamlines, horizontal and vertical 
velocity profiles, and vertical temperature profiles.   
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Introduction 

One of the most basic restricted geometries in which fluid motion may be investi-

gated is the rectangle, or cubic container. The tangential in-plane movement of the bounding 

wall is the most important mechanical driving force that acts on a flowing liquid with constant 

density while maintaining a simple domain. A cuboid with one of its bounding walls moving 

tangentially to itself is known as a lid-driven cavity. Because of its simplicity, the lid-driven 

cavity has received a lot of attention. It is been used as both a numerical benchmark problem 

and a test bed for investigating specific physical phenomena. The Reynolds number and the 

cavity aspect ratio, which are defined as Re = Uoh/n and A = h/b, respectively, are the two 

most important non-dimensional variables that characterize the flow. Here h and b are the 
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height and breadth of the cavity, n is the fluid’s kinematic viscosity, and Uo is the speed of top 

bounding wall. The results of numerical computational investigations have been previously 

investigated in the literature [1-9] as well as the concordance between these computational 

estimates and actual experiments [2, 4]. 

When a temperature gradient is introduced into the cavity side walls, it provides a 

major dynamical factor. The temperature difference generates a buoyancy effect, which af-

fects the cavity’s velocity and temperature. Understanding this mixed-driven natural convec-

tive flow with internal impediments contributes to a better understanding of fundamental fluid 

dynamics and real-world engineering problems. A review of the literature revealed that inves-

tigations into mixed convection inside a closed cavity with obstacles are fairly frequent. The 

findings of numerical investigations of mixed convective flow in a hollow square cavity were 

published by Iwastu et al. [10]. They expanded on Mohamad and Viskanta’s [11] work in 

their research. Mohammad and Viskanta [11] published the findings of numerical studies of 

mixed convective flow in a shallow cavity with A ≪ 1. It is worth mentioning that in their 

study, the temperature of the main sliding wall was lower than the temperature of the fixed 

bottom wall. Thermal insulation was applied to the two vertical side walls. As a result, the 

flow became gravitationally unstable. 

Iwastu et al. [10] examined the problem by maintaining a higher temperature on the 

upper sliding wall than on the bottom wall. They investigated a system that was gravitation-

ally stable and had fluid-flow because of a top sliding wall. In such a case, only conduction 

was responsible for heat transport. As aforementioned, the majority of heat transport occurred 

by conduction, which was aided by forced convection. They also imposed a constant vertical 

temperature differential throughout the system. The key objective of their research was to 

properly explain the increase in heat transfer rate and provide velocity fields that were pro-

duced by moving the top wall in its own plane at a constant velocity using an external force. 

To cover the larger spectrum of flow characteristics, they employed a wide range of Reynolds 

and Rayleigh numbers. 

In the last two decades, mixed convection had been studied using lattice Boltzmann 

method (LBM) in a driven cavity with various types of fluids and boundary conditions 

[12-16]. Karimipour et al. [12] used a Cu-water nanofluid to study mixed convection in an 

inclined cavity. They investigated mixed convection and discovered that for Ri = 0.1, Ri = 1, 

and Ri = 10, forced convection, mixed convection, and natural convection dominate, respec-

tively. Guo et al. [13] investigated mixed convection for a variety of aspect ratios and Rich-

ardson number. They discovered that the Richardson number can be used to determine the 

relative significance of natural and forced convection modes in heat transport. Bettaibi et al. 

[14] used multiple relaxation times LBM to investigate mixed convection in a differentially 

heated cavity and discovered that heat transmitted in terms of Nusselt number rose as Rich-

ardson number decreased. Abu-Nada et al. [15] investigated mixed convection by flowing a 

nanofluid through a square chamber with a wavy bottom wall. They discovered that the in-

troduction of nanoparticles increased heat transmission significantly for all values of the 

Richardson number. Using a wide range of Hartmann numbers, Oztop et al. [16] they inves-

tigated mixed convection in a driven cavity in the presence of a magnetic field with a heated 

bottom corner. They discovered that raising the Hartmann number reduces heat transmission. 

As a result, the magnetic field is vital in controlling heat transmission and fluid movement.  

Ouhroum et al. [17] recently investigated mixed convection in a cavity with various 

baffle sizes and positions. In the present account, we investigate the same problem with a 

square-shaped solid obstacle placed in the cavity’s centre. To complete this work, three sepa-
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rate cases are studied. In Case 1, the flow behaviour is investigated in a simple cavity, like in 

Iwastu’s et al. [10] paper. In Case 2, an obstacle is put in the centre of the cavity and kept at 

zero temperature. In Case 3, the obstacle is kept at the same high temperature as the top slid-

ing wall. 

Because we are investing flow in a square cavity, the length to width ratio, com-

monly known as the aspect ratio, is 1. Prandtl number is set to 0.71  in most cases because 

this permits the computation of the explicit impacts of forced convection, represented by 

Reynolds number  and natural convection, represented by Grashof number. 

Mixed convection is among some of the hot topics in thermodynamics because of its 

uses in many important industrial applications, such as in the cooling of electronic equipment, 

nuclear reactors, microelectronic devices, float glass manufacturing, electrical components, 

etc. The fundamental purpose of this research is to demonstrate a significant increase in global 

heat transmission and the influence of heated and cold obstacles on temperature distribution 

above that provided by the conductive mode, as well as the effects of obstacles on the velocity 

of the fluid in the cavity. The sliding top surface wall creates forced convection, which ac-

complishes this. This study also focuses on the influence of hot and cold impediments on the 

temperature and flow of fluid within the cavity. The cavity’s upper wall is moving at a con-

sistent velocity Uo while bottom wall is at rest. At the cavity’s walls, bounce back boundary 

conditions with known velocity are imposed.  

Statement of the problem 

The schematic flow of the problem is repre-

sented in fig. 1. A Cartesian co-ordinate system is 

used to represent the computing domain, with the 

origin in the cavity’s bottom left corner. A square 

cavity with one unit of length on each side and a 

solid square shaped body, C, is placed in the cavity’s 

centre build up the whole system. The bounce-back 

boundary conditions are simple and straight condi-

tions that are used to describe solid, static, or dy-

namic boundary conditions. Because the top wall 

moves at a consistent speed, bounce-back boundary 

conditions with a known velocity are implemented 

on the top wall. At the obstacle’s boundary, bounce 

back boundary conditions are implemented. The side walls of the cavity are considered adia-

batic, whereas the upper wall is at temperature, Th, and the bottom wall is at a lower tempera-

ture, To. According to the problem statement, the boundary conditions are: 

At 1, 0  1, ( ,0) and 1o hy x U T T   u  

At = 0, and 1, 0  1, = 0 and = 0
T

x y
x




u  

At = 0, 0  1, = 0 and = = 0oy x T Tu  

Methodology 

The Navier-Stokes (NS) equations serve as the basis for CFD. The macroscopic 

characteristics of a fluid, such as temperature, velocity, and pressure, are commonly computed 

Figure 1. Flow configuration 
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using finite volume, finite difference, and finite element methodologies. These approaches 

transform governing differential equations with specific boundary and initial conditions to a 

system of algebraic equation. For incompressible fluid-flow, the governing equations for our 

problem are presented in non-dimensionalized form are continuity equation: 

= 0u           (1) 

momentum equation 

1 2

2

Gr
( ) = Re

Re
t p T      u u u u e        (2) 

and energy equation 

21
( ) =

PrRe
tT T T   u         (3) 

using the usual Boussinesq approximation [18]. It is a method for solving non-isothermal flow 

without solving the compressible NS equations. Variations in density are assumed to have no 

effect on the flow field other than to cause buoyancy forces. The macroscopic velocities are 

represented by u = (u,v). The density of the fluid, pressure field, temperature, and kinematic 

viscosity are represented by , p, T, and n, respectively, Ñ is the nabla operator and e = (0,1) 

represents a unit vector heading in the direction of buoyancy force. 

The NS equations can be solved indirectly using LBM. The LBM is a comparatively 

modern way to understand the essence of fluids, and it is a solid method in the field of CFD, 

with a significant advantage over traditional computational approaches. It has a very vast 

range of applications in the modelling of incompressible flows in image processing, biomedi-

cal flows, blood vessel flows, multiphase flows, porous medium flows, chemical reactions, 

and other fields. 

A distribution function represents the property of a collection of fluid particles. For 

the flow and temperature fields, the double population thermal LBM employs two separate 

distribution functions, F and G, respectively, for incompressible thermal flow problems [19, 

20]. After applying the Bhatnagar-Gross-Krook (BGK) approximation [21], the discretized 

form of the governing equation of LBM-BGK [22] can be written. 

In order to compute flow: 

eq
i

Δ
( Δ , Δ ) ( , ) = ( , ) ( , )i i i i

v

t
F t t t F t F t F t f


      
 

r r r r       (4) 

In order to compute temperature: 

eqΔ
( Δ , Δ ) ( , ) = ( , ) ( , )i i i i i

T

t
G t t t G t G t G t


     
 

r r r r       (5) 

where i denotes the discrete particle velocity vectors, r is the position of particle at time t, and 

the time step t is considered to be one, and eq ( , )iF tr  and eq ( , )iG tr  are the particle equilib-

rium distribution function for flow and temperature fields, respectively. The relaxation times 

for the flow and temperature are denoted by v and T , respectively. In this work, the relaxation 

time ranges from 0.5 to 0.8. The buoyancy force term, f is used with the Boussinesq approxi-

mation. 
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The eq ( , )iF tr  and eq ( , )iG tr  local equilibrium distribution function terms use in 

eqs. (4) and ()5, respectively, can be written as: 

22
eq

2 4

( ) ( )9 3
( , ) = 1 3

2 2

i i
i i

u u u
F t

 


 

  
     
   

r     (6) 

eq

2

( )
( , ) = (1 3 i

i i

u
G t






 
 

 
r          (7) 

where  is the fluid density and i represents weighting factor for flow and temperature field. 

The thermal diffusivity, a, and kinematic viscosity, n, are linked to the relaxation time in the 

following ways: 

2 2= 0.5 ( 0.5) and = 0.5 ( 0.5)v T        

The discrete particle velocity vector and weighting factors for the D2Q9 lattice con-

figuration are shown in tab. 1. Figure 1 depicts the lattice arrangement for the D2Q9 model. 

With the help of the distribution function, we can easily enumerate macroscopic 

variables such as density, velocity and temperature as: 

8 8 8

0 0 0

1
= ,   = ,   and  =i i i

i i ii

F F T G 


  

  u  

 

 

 

Code validation 

We initially investigate the streamline and temperature isotherms at Re = 10
3
 and 

Gr = 10
6
 to validate our developed code. According to the figure and tables, the present find-

ing is consistent with Iwastu’s et al. [10] results. Section Results and discussions includes 

details on the streamlines and temperature isotherms shown in the fig. 3. Figure 3 shows the 

comparison between stream lines and isotherms at Gr = 10
6
 and Re = 10

3
. 

Tables 2 and 3 below compares the current result computed using LBM with the 

Iwastu et al. [10] results, at a fixed Grashof number. 

Table 1. Weight functions and velocity vectors for 
D2Q9 lattice arrangements 

i i i 

0 4/9 (0,0) 

1 

1/9 

(1,0) 

2 (0,1) 

3 (–1,0) 

4 (0,-1) 

5 

1/36 

(1,1) 

6 (–1,1) 

7 (–1,–1) 

8 (1,–1) Figure 2. The sketch of D2Q9 model 
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Results and discussions 

The ratio Gr/Re
2
 is known as the Richardson number. It demonstrates the im-

portance of natural convection driven by buoyancy effects over forced convection generated 

by the top sliding lid. It is worth mentioning that the results for a simple cavity are exactly 

similar to those of the research work of Iwastu et al. [10]. However, a square cavity with an 

internal heated or cold obstacle has not been studied yet. The horizontal velocity profile is 

plotted along x = 0.5 and the vertical velocity profile is plotted along y = 0.5 in all cases. If Ri 

≪ 1, the mechanical action of the sliding lid overcomes the buoyancy effect. Figures 4-6 

show the horizontal and vertical velocity profiles for Ri ≪ 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison between the present results and Iwastu et al. [10] results at 
Gr = 102 and Re = 103 

Re = 102 umin umax vmin vmax 

Iwastu et al. [10] 0.2037 1.0000 –0.2448 0.1698 

Present 0.2007 1.0000 –0.2330 0.1655 

Table 3. Comparison between the present results and Iwastu et al. [10] results at 

Gr = 102 and Re = 102 

Re = 103 umin umax vmin vmax 

Iwastu et al. [10] –0.3781 1.0000 –0.5178 0.3657 

Present –0.4007 1.0000 –0.5254 0.3822 

Figure 3. Comparison of stream lines and isotherms at Gr = 106 and Re = 103 between; 
(a) Iwastu’s et al. [10] and (b) present results 

Figure 4. (a) horizontal and (b) vertical velocity profile at; 
Gr = 102 and Pr = 0.71 
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The qualitative characteristics of the flow are identical to those of the flow of 

non-stratified fluid in the classic lid-driven cavity. The development of boundary layer-like 

flow characteristics is seen at high Reynolds numbers. These properties have been thoroughly 

investigated in previous papers [8-10]. Since the bulk of fluid motion is circular, and buoyan-

cy effects are negligible. That is why an obstacle in the centre of the cavity has no significant 

influence on the velocity of fluid in Cases 2 and 3. However, the velocity of the fluid de-

creases near the obstacle as compared to flow in a simple cavity without an obstacle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, if Ri ≫ 1, the buoyancy effect takes priority over the mechanical effect of 

the sliding lid. Figures 7-9 shows velocity profile for Ri ≫ O(1) and Ri ≪ 1. For Re = 100, 

400, and 1000 we have Ri ≫ O(1). As a result, the buoyancy effect takes priority. So, the 

fluid remains stagnant throughout the majority of the cavity. In Case 2, due to the cold obsta-

cle, the temperature of the fluid around the obstacle decreases. As a result, the buoyancy ef-

fect becomes more dominant around the obstacles. That is why there is a substantial change in 

velocity near the obstacle. When we utilize a heated obstacle, the buoyancy effect reduces 

near the obstacle and fluid circulates in a much greater region than in Case 2. As a result, a 

change is seen in velocity near the obstacle. We have Ri ≪ 1 for Re = 3000, thus the results 

are the same as reported earlier.  

Figure 5. (a) horizontal and (b) vertical velocity profile at; 
Gr = 102 and Pr = 0.71 with internal square 

Figure 6. (a) horizontal and (b) vertical velocity profile at; 
Gr = 102 and Pr = 0.71 with heated square 
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The numerical results have been reorganised to show the change in fundamental row 

character as Grashof number grows at a fixed Reynolds number as shown in figs. 10-12. As 

the conditions Ri ≫ O(1) and Ri ≪ 1 are firmly met, these results reveal the previously men-

tioned change in the major flow pattern. 

Figure 7. (a) horizontal and (b) vertical velocity profile at; 
Gr = 106 and Pr = 0.71 

Figure 8. (a) horizontal and (b) vertical velocity profile at; 
Gr = 106 and Pr = 0.71 with internal square 

Figure 9. (a) horizontal and (b) vertical velocity profile at; 
Gr = 106 and Pr = 0.71 with heated square 
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Figures 13 and 14 depicts the streamlines and temperature fields, respectively, 

for Ri ≪ 1 for each of the three cases. As a result, at comparable values of Reynolds number 

the overall flow characteristics of the figures are similar to those of a normal mechanical-

ly-driven cavity flow of a non-stratified fluid. Major circulation occupies the cavity’s central 

Figure 10. (a) horizontal and (b) vertical velocity profile at; 

Re = 400 and Pr = 0.71 

Figure 11. (a) horizontal and (b) vertical velocity profile at; 
Re = 400 and Pr = 0.71 with internal square 

Figure 12. (a) horizontal and (b) vertical velocity profile at; 

Re = 400 and Pr = 0.71 with heated square 
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section, while smaller cells may be seen at the cavity’s bottom corners. Streamlines are nearly 

identical in all cases. When an obstacle is added, the fluid-flow near the obstacle slows down 

slightly compared to a flow without an obstacle. Because buoyancy effects are insignificant, 

the temperature of obstacles has no impact on streamlines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Ri ≪ 1 indicates, natural convection has a negligible effect. Fluids are thorough-

ly mixed because of the strong effects of mechanically-driven circulations. As a result, much 

of the inner region has very small temperature variations in all three cases. Because of forced 

convection heat transfer from obstacle to surrounding region that’s why, the temperature of 

the fluid near a cold obstacle is lower than in Case 1, and it rises as we go away from it in the 

circulation area. The temperature change in the presence of a heated obstacle is nearly identi-

cal to that in the absence of an obstacle, however, the temperature of the fluid surrounding the 

obstacle is slightly higher. 

Figures 15 and 16 depicts the streamlines and temperature fields, respectively, 

for Ri ∼ O(1) for each of the three cases. In the case of Ri ∼ O(1) the buoyancy effects are 

likely to outweigh the impacts of the sliding wall. In comparison to the circulation region for 

Ri ≪ 1, the internal circulation is confined to a narrow zone near to the sliding top lid because 

buoyancy factors now dominate over the sliding wall effect. The mechanically-driven top 

lid’s impact only travels a short distance into the inner region. The steady stratification obvi-

ously prevents vertical movements. Much of the fluid in the middle and bottom interior areas 

remains stationary. 

When a cooled obstacle is put into fluid, the buoyancy effects increase, so the fluid 

circulation is restricted to a narrower zone. Weak fluid circulation can also be visible in the 

Figure 13. Variation of global flow with; (a) simple cavity, (b) internal cooled square, 
and (c) heated square at Re = 103 and Gr = 102 

Figure 14. Variation of temperature of flow with; (a) simple cavity, (b) internal cooled square, 
and (c) heated square at Re = 103 and Gr = 102 
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cavity’s lower half. However, in all scenarios, the majority of the fluid remains stagnant in the 

bottom region of the cavity. When an obstacle is heated, the temperature surrounding it rises, 

reducing the buoyancy effect in the region and causing the fluid circulation zone to rise as it 

would in the absence of obstacles. The vertical temperature stratification in the stationary 

inner portions is nearly linear. This reflects the fact that heat transmission in the cavity’s mid-

dle and bottom is mostly conductive. In a tiny zone near the top of the cavity, fluids are only 

fairly well mixed. In this zone, where mechanically generated convective activities are no-

ticeable, the temperature is fairly stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numerical results have been reorganised to show the change in temperature dis-

tribution as Grashof number grows at a fixed Reynolds number, as shown in fig. 17 . In all 

cases, the temperature profiles clearly fulfil the boundary conditions described in Section 

Statement of the problem. Because the conditions Ri ≫ O(1) and Ri ≪ 1 are strictly met, the-

se results show the previously specified change in the temperature profile. When Ri ≪ 1 we 

can see that forced convection contributes to the majority of heat transmission, whereas natu-

ral convection is negligible. When Ri = O(1) both types of convection play a significant role. 

When Ri ≫ 1, forced convection becomes negligible. 

More investigation was performed to see how the temperature of the fluid was af-

fected by the Prandtl number. Figure 18 depicts the results. The temperature distribution in 

the interior tends to be vertically-linear for Pr ≪ 1. When Prandtl number is quite high, a 

strong circulation cell occupies the top half of the cavity interior, resulting in an area of well 

mixed fluids. As a result, the interior vertical temperature profile indicates a zone of rather 

constant temperature in the upper section of the cavity. In the case of Pr ≪ 1, the temperature 

of the obstacle has no noticeable influence as compared to high Prandtl number. However, in 

Figure 15. Variation of global flow with; (a) simple cavity, (b) internal cooled square, 
and (c) heated square at Re = 103 and Gr = 106 

Figure 16. Variation of temperature of flow with; (a) simple cavity, (b) internal cooled square, 
and (c) heated square at Re = 103 and Gr = 106 
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the situation of high Prandtl number, the temperature of the obstacles affects the temperature 

of the fluid near the obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At a particular height, ¶T/¶y and –PrRevT indicate the contributions of conductive 

and convective modes to total vertical heat transfer. Figures 19-21 shows the separated plots 

for both terms at various Grashof number with a fixed Re = 100. Convection is responsible 

for heat transport in the top and centre regions of the cavity when Ri £ O(1). On the other 

hand, when Ri ≫ 1 the graph clearly shows that the conductive method of heat transmission 

takes precedence over the convection mode. However, in the region surrounding heated and 

cold obstacles, both modes of heat transport play a significant role. This examination of the 

individual profiles of ¶T/¶y and –PrRevT confirms the above-mentioned qualitative trends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Vertical profile of temperature with; (a) simple cavity, (b) cooled obstacle, 

and (c) heated obstacle at Re = 103 and Pr = 0.71, x = 0.5 

 

Figure 18. Vertical profile of temperature with; (a) simple cavity, (b) cooled obstacle, 

and (c) heated obstacle at Re = 103 and Gr = 106, x = 0.5 

 

Figure 19. Vertical profile of; (a) Ty and (b) –PrRevT along x = 0.5 at Re = 102 
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The practical design of heat transmission devices is heavily influenced by differ-

ences in local Nusselt numbers at the top and bottom walls. At Re = 400 and varying Grashof 

number, figures illustrate the Nusselt number profile at the top and bottom walls. Figure 22 

depicts the Nusselt number for Ri ≪ 1, indicating when the convective mode of heat transport 

is dominating. The behaviour of the Nusselt number profiles at both boundary walls indicates 

the presence of significant fluid movements, which improves heat transmission throughout the 

cavity. Because the temperature differential near the top and bottom walls increases owing to 

the inner cold obstacle, the Nusselt number is larger on the top wall with cold obstacles as 

compared with heated or without obstacles. However, the findings for the heated obstacle are 

the same as in Case 1. As previously stated, the temperature differential is the same in both 

circumstances. 

Figure 23 depicts the Nusselt number profile for Ri ≫ 1. Conduction dominates heat 

transfer in the interior, and fluid motions are generally subdued. As a result, Nusselt number 

at the bottom wall is getting closer to unity. Convective heat transport is fairly significant at 

the wall due to the presence of circulation near the top wall. As previously explained, when 

there is a cold obstacle, the temperature difference increases near the top wall. However, heat 

transfer at the bottom wall is totally conductive. The Nusselt number profile for the heated 

Figure 20. Vertical profile of; 
(a) Ty and (b) –PrRevT along x = 0.5 at Re = 102 with cooled obstacle 

Figure 21. Vertical profile of; 

(a) Ty and (b) –PrRevT along x = 0.5 at Re = 102 with heated obstacle 
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obstacle is nearly identical to that of the bottom wall without an obstacle. However, with the 

exception of the top left corner, the temperature at the top wall is evenly distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

The numerical investigation of mixed convective flow and heat transfer in a 

square-shaped lid driven-cavity with an internal square-shaped obstacle located in the centre 

of the cavity was studied in detail using LBM. 

When Ri ≪ 1 the buoyancy effect was overcome by the forced convection produced 

by the sliding lid. The majority of the cavity was covered by fluid circulation generated by the 

top wall, and temperature fluctuations were relatively linear in the circulation zone. The cold 

obstacle played an important role in reducing the effect of temperature transport in the central 

circulation zone. Furthermore, the obstacle in the centre of the cavity had produced no signif-

icant influence on velocity, both for a heated and a cold obstacle. Temperature distributions 

were almost identical in the case of a heated obstacle and without an obstacle. We conclude 

that convection was responsible for the bulk of heat transport, whereas conduction was mini-

mal. 

When Ri ≫ 1, the buoyancy effect was dominant. Fluid circulation was restricted to 

a small zone in the upper right half of the cavity. Much of the fluid at the bottom and in the 

Figure 22. Local Nusselt number profile with; (a) simple cavity, (b) cooled obstacle, 

and (c) heated obstacle at Re = 400 and Gr = 102, x = 0.5 

Figure 23. Local Nusselt number profile with; (a) simple cavity, (b) cooled obstacle, 

and (c) heated obstacle at Re = 400 and Gr = 106, x = 0.5 
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intermediate regions remained stagnant. In the bottom half, the isotherms were more horizon-

tal, and a vertically-linear temperature distribution occurred. The results in the case of a heat-

ed obstruction were nearly identical to those in Case 1, with the exception of a tiny modifica-

tion in the region around the obstacle. The circulation zone was confined to a smaller region 

when there was a cold obstacle as compared to a simple cavity or a cavity with a heated ob-

stacle. Also, the temperature in the lower half of the cavity was almost zero. Conduction was 

responsible for the majority of heat transmission in this case, whereas convection was mini-

mal. 

The effect of Prandtl number on flow properties was investigated for Ri ∼ O(1). 
For Pr ≪ 1, the temperature distribution in the interior was almost vertically linear. A 
vigorous circulation cell filled the upper half of the cavity interior when Prandtl number 
was relatively high, resulting in a region of well-mixed fluids. 

Additional examinations of the numerical results support the above-mentioned 
qualitative characteristics. 

Nomenclature 

A – aspect ratio, [–] 
b – breadth of cavity 
C – squared shaped body 
e – unit vector in direction of 

buoyancy force 
f – buoyancy force term 
Feq – equilibrium distribution function 

for fluid-flow 
Gr – Grashof number, [–] 
Geq – equilibrium distribution function 

for temperature of fluid field  
h – height of cavity 
p – pressure field 
Pr – Prandtl number, [–] 
Re – Reynold number, [–] 
Ra – Rayleigh number, [–] 
r – buoyancy force term 
T – temperature 
Th – temperature of top wall 

To – temperature of bot-tom wall 
t – time step 
Uo – non dimensionalized lid velocity 
u – non dimensionalized velocity 
u,v – horizontal and vertical component 

of velocity 
umin,umax – minimum and maximum of 

horizontal component of velocity 
vmin,vmax – minimum and maximum of 

vertical component of velocity 

Greek symbol 

a – thermal diffusivity, [m2s–1] 
n – kinematic viscosity, [m2s–1] 
v – relaxation time for flow, [s–1] 
T – relaxation time for temperature, [s–1] 
 – fluid density, [kgm–3] 
 – discrete particle velocity, [–] 
 – weighting factors, [–] 
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