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Helical flows of generalized Maxwell fluid is researched between two infinite co-
axial circular cylinders. The velocity field and the adequate shear stress corre-
sponding to the flow of a Maxwell fluid with fractional derivative model, between 
two infinite coaxial cylinders, are determined by means of the Laplace and finite 
Hankel transforms. The first solutions that have been obtained, presented under 
integral and series form in terms of the generalized G- and R-functions, satisfy 
all imposed initial and boundary conditions. The similar solutions for ordinary 
Maxwell and Newtonian fluid can be also obtained as the limit of the solution of 
generalized Maxwell fluid. 
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Introduction 

The generalized Maxwell fluid as one of the non-Newtonian fluid is now considered 

to be more important and appropriate in technological application than Newtonian fluids. For 

Newtonian fluids, the transient velocity distribution for the flow within a circular cylinder can 

be found in [1]. The first exact solutions for flows of non-Newtonian fluids in such a domain 

seem to be those of Ting [2], corresponding to second grade fluids and Srivastava [3] for 

Maxwell fluids. Later, Casarella et al. [4] obtained an exact solution for the motion of a sec-

ond grade fluid due to both longitudinal and torsional oscillations of the rod. Rajagopal [5] 

found two simple but elegant solutions for the flow of the same fluid induced by the longitu-

dinal and torsional oscillations of an infinite rod. These solutions have been already extended 

to Oldroyd-B fluids by Rajagopal et al. [6]. During recent years, many papers of this type 

have been obtained by Khan et al. [7], Rajagopal [8], Fetecau [9], and Yang [10, 11]. The hel-

ical flow in an annular region between two coaxial circular cylindrical surfaces due to a com-

bination of their rotation and the flow along the axis. In general, the streamlines are helices 

[12]. Such a motion is very important to study the mechanism of viscoelastic fluids flow in 

many industry fields, such as oil exploitation, chemical and food industry, bio-engineering 
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and lubrication studies [13]. Such a flow includes simple shear, channel, Couette, Poiseuille, 

and pipe flows as special cases. The term helical flow was first introduced by Rivlin [14] 
who derived the velocity distribution for fluids of the differential type in a concentric an-
nular space. Coleman [15] also studied the concentric helical flow and gave the funda-
mental theory for a general fluid. Using Taylor series expansion of the velocity profiles, 
Wood [16] has considered the helical flow of an Oldroyd-B fluid due to the combined ac-
tion of rotating cylinders and a constant pressure gradient. Fetecau et al. [17] studied 
some helical flows of Maxwell and Oldroyd-B fluids between two infinite coaxial cylin-
ders and within an infinite cylinder by means of the expansion theorem of Steklov. The 
velocity fields and the associated tangential stresses are determined in form of series with 
Bessel functions.  

Motivated by the introduction, this paper researches the Helical flows of Maxwell 

fluid between two infinite coaxial circular cylinders. The inner cylinder begins to rotate 

around its axis and to slide along the same axis due to the torsional and longitudinal time de-

pendent shear stresses. The exact solution of velocity field and shear stress are obtained by the 

generalized G- and R-functions. 

Basic governing equations 

The conservation and constitutive equations of an incompressible Maxwell fluid 

with fractional derivative are given by [18]: 

  
(D )T

t

T pI S

S S V S LS SL A 

= − +

+ +  − − =
 (1) 

where T is the Cauchy stress tensor, pI – the indeterminate spherical stress, S – the extra-stress 

tensor, λ – the material constant, m – the dynamic viscosity of the fluid, A = L + LT – the first 

Rivlin-Ericksen tensor with L the velocity gradient, V – the velocity vector, Ñ – the gradient 

operator, the superscript T – the transpose operation, and the fractional differential operators 
Dt
 are defined as [19]. This model can be reduced to ordinary Maxwell model when 1. →  

Furthermore, this model reduces to the classical Newtonian model for 1 →  and 0. →  

In cylindrical co-ordinates (r, θ , z), the helical flow velocity is: 

 ( , ) ( , ) ( , ) zV V r t r t e v r t e= = +  (2) 

where eθ and ez are the unit vectors in the θ- and z-directions. For such flows, the constraint of 

incompressibility is automatically satisfied. Since the velocity field (2) depends only on r and 

t, so the extra stress tensor S is also independent of θ and z. If the fluid is assumed to be at rest 

at the moment t = 0, then ( ,0) 0, ( ,0) 0,V r S r= = introducing (2) into the constitutive equation 

(1), we find that: 

1 2

1 ( , )
(1 D ) 0, (1 D ) ( , ) ( , ), (1 D ) ( , )t rr t t

v r t
S r t r t r t

r r r

         
  

+ = + = − + = 
  

 (3) 

where 1= rS  and 2 = rzS are the shear stresses, which are different of zero. In the absence of 

body forces and pressure gradient in the axial direction, the balance of the linear momentum 

leads to the relevant and meaningful equation: 



Wang, P
 

 2 2

( , ) ( , ) 1
(1 D ) ( , ) , ( , )t

v r t v r t
r t r t

r t r r

    
   

+ = = + 
   

 (4) 

where ρ is the constant density of the fluid. 

In this paper, we are interested into the helical flow [20] of a generalized Maxwell 

fluid between two infinite coaxial circular cylinders of radius R1 and 2 2 1( ).R R R  Suppose 

that an incompressible Maxwell fluid at rest is situated in the annular region between two 

infinite coaxial circular cylinders. At time 0t += the inner cylinder begins to rotate around its 

axis due to a time dependent shear 1( , )r t and to slide along the same axis due to a time de-

pendent shear 2 1( , ) :R t   

 
, ,1 1 2 2 1 2

1 1
( , ) , , ( , ) , , 0 1

f g
R t R t R t R t   

   
− −

− −   
= =     

   
 (5) 

where f and g are constants and the generalized Ra,b(c, t) function is defined by [21]: 

 
( 1) 1

,

0

( , )
[( 1) ]

n n a b

a b

n

c t
R c t

n a b

+ − −

=

=
 + −

  (6)  

Due to the shear, the fluid is gradually moved. Its velocity is of the form (2) and the 

governing equations are given by eqs. (3) and (4). The appropriate initial and boundary condi-

tions are: 

 1 2 1 2

( ,0) ( ,0)
( ,0)= ( ,0) 0, ( ,0) ( ,0) 0, [ , ]

r v r
r v r r r r R R

t t


  

 
= = = = = 

 
  (7) 

 
11(1 D ) ( , ) | , 0t r Rr t ft t  =+ =    (8) 

 
12(1 D ) ( , ) | , 0t r Rr t gt t  =+ =    (9) 

 2 2( , ) 0, ( , ) 0, 0R t v R t t = =    (10) 

Calculation of the velocity field 

Applying the Laplace transform to (4) and using the Laplace transform formula for 

sequential fractional derivatives, we obtain: 

 1 2

1 ( , )
(1 ) ( , ) ( , ), (1 ) ( , )

v r s
s r s r s s r s

r r r

       
  

+ = − + = 
  

 (11) 

 1 2

2 1
( , ) ( , ), ( , ) ( , )s r s r s sv r s r s

r r r r
    

    
= + = +   

    
 (12) 

Eliminating 1 and 2 among (11)-(12), we obtain the ODE: 

 
2

1

2 2

1 1
( ) ( , ) ( , )s s r s r s

r rr r

   +
  

+ = + − 
 

 (13) 
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2

1

2

1
( ) ( , ) ( , )s s v r s v r s

r rr

 +
  

+ = + 
 

 (14)  

where   = is the kinematic viscosity of the fluid, the image functions have to satisfy the 

conditions: 

 
1 12 2

1 ( , )
( , ) | , |r R r R

f v r s f
r s

r r rs s


 
= =

  
− = = 

  
 (15) 

  2 2( , ) 0, ( , ) 0R s v R s = =  (16) 

In the following, let us denote the Hankel transforms of ( , )r s and ( , )v r s [22]: 

 
2

1

( , ) ( , ) ( )d , 1,2,3,

R

H p p

R

r s r r s B rr r p = =  (17) 

 
2

1

( , ) ( , ) ( )d , 1,2,3,

R

H q v q

R

v r s rv r s B rr r q= =  (18) 

where rp and rq are the positive roots of the transcendental equation 2( ) 0rB R = and 

2( ) 0v rB R = , and: 

 1 2 1 2 1 1( ) ( ) ( ) ( ) ( )p p p p pB rr J rr Y R r J R r Y rr = −  (19) 

 0 1 1 1 1 0( ) ( ) ( ) ( ) ( )v q q q q qB rr J rr Y R r J R r Y rr= −  (20) 

where ( ), ( )v vJ Y  are the Bessel functions of the first and second kind of order v. Multiplying 

both sides of (13) and (14) by ( )prB rr and ( ),v qrB rr  integrating with respect to r from R1 to 

R2 and taking into account the conditions (16), we can obtain: 

 
2

1

1

2
2

2 2

1 2 1
( )d ( , ) |

R

p r R p H
pR

r rB rr r r s r
r r r r rr r



  
 =

    
+ − = − −   

    
  (21) 

 
2

1

2
21

2

( , )1 2
( )d

R

v q q H
qR

v R sv v
r B rr r r v

r r r rr

   
+ = − 

   
  (22) 

and  

 
2

1

1 1( + ) ( , ) ( )d ( + )

R

p H

R

r s s r s B rr r s s 
   + +=  (23) 

 
2

1

1 1( + ) ( , ) ( )d ( + )

R

v q H

R

r s s v r s B rr r s s v  + +=  (24) 

So we can get: 

 
1

1 2 2

2

2 1 2
( ) ( , ) |

π π
H r R p H p H

p p

f
s s r s r r

r r r r s

  
      



+
=

 
+ = − − = − 

 
 (25) 
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 1 2 21

2

( , )2 2
( )

π π
H q H q H

q q

v R s g
s s v r v r v

r r r s

  
  



+ 
+ = − = −


 (26) 

in order to determine ( , )r s and ( , )v r s  from ( )H s and ( )Hv s , we first write (25) and (26) 

under the suitable form: 

 
2 2
2 1

2 3 2 2 3 1 2
1 2

4 2 1

π 2 π ( )
H

p p p

R fR f s

R r R s r s s s r








   +

+
= −

+ +
    

 1

3 2 3 1 2
1

2 2 1

π π ( )
H

q q q

gR g s
v

R r s r s s s r







   +

+
= −

+ +
 (27) 

and use the inverse Hankel transform formula [23], one gets the expression for and v in the 

form: 

 

2 2 2 22 2
1 2 1 2

2 2 2 2
1 12 1 1 2 2 1 1 2

( ) ( ) ( ) ( )π π
( , ) , ( , )

2 2( ) ( ) ( ) ( )

p P P q q q

H H

p qP P q q

r J R r B rr r J R r B rr
r s v r s v

J R r J R r J R r J R r

 
 

 

= =

= =
− −

   (28)  

Due to: 

 
2 2

1 1

1 0 1 0 2 1 0 1 0 2

1 1
( )d [ ( ) ( )], ( )d [ ( ) ( )]

R R

p p p p p p
p pR R

J rr r J R r J R r Y rr r J R r J R r
r r

= − = −   (29) 

and 

 
2

1

2 2
2 2 1

1 2 2 2 1( )d ( ) ( )

R

p p p
p pR

R R
r Y rr r Y R r Y R r

r r
= −  (30)  

so 

 
2

1

2 2 2
2 2

2 3
1

4
( )d

π

R

p

pR

r R R
B rr r

r R r


−
=  (31)  

Since: 

 
2

1

2 1
0 1 2 1 1( )d ( ) ( )

R

q q q
q qR

R R
rJ rr r J R r J R r

r r
= −  (32) 

 

2

1

2 1
0 1 2 1 1( )d ( ) ( )

R

p p p
q qR

R R
rY rr r Y R r Y R r

r r
= −  (33) 

 
2

1

2 2 1 1
0 1 2 1 1 0 2 0 12

ln ln 1
ln ( )d ( ) ( ) [ ( ) ( )]

R

q q q q q
q q qR

R R R R
r rJ rr r J R r J R r J R r J R r

r r r
= − + −  (34) 
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2

1

2 2 1 1
0 1 2 1 1 0 2 0 12

ln ln 1
ln ( )d ( ) ( ) [ ( ) ( )]

R

p q q q q
q q qR

R R R R
r rY rr r Y R r Y R r Y R r Y R r

r r r
= − + −  (35) 

that is  

 
2

1

3
2 1

2
ln ( )d

π

R

v q

qR

r
r B rr r

R R r

 
= 

 
  (36) 

Indeed, taking into account (30) and (35), we can obtain:  

 

22 2 2
1 22 1

2 2 2 2 1 2
12 2 1 1 2

( ) ( )π 1
( , )

2 [ ( ) ( )] ( )

p p

q p p p p

J R r B rrr R fR f s
r s

r R s r J R r J R r s s s vr









 



+
=

− +
= −

− + +
   (37) 

and  

 

2
1 21

2 2 2 1 2
2 1 2 1 1 2

( ) ( )π 1
ln

[ ( ) ( )] ( )

p p

q p p p p

J R r B rrgR r g s
v

Rs r J R r J R r s s s r








  



+
=

+ 
= − 

− + + 
  (38) 

In order to avoid the burdsome calculations of residues and contour integrals, we 

apply the discrete inversion Laplace transform method, we can get: 

 

2 2

1 2 1 1
0

2 2

1 2 1 1
0

1 1

( ) ( )

( ) ( )

k
k

q

k
kq

k
k

q

k
kq

r s

s s s r s

rs s

s s s r s

 

 

 



   



  

− −

+ − +
=

− −

+ − +
=

 
 = −
 + + +

 
 = −
 + + +





 

For this we use the expansion: 

 

2 2 2

1 2 1 1 1 1
0

1+ 1

( ) ( ) ( )

k
k k

p

k k
kp

rs s s

s s s r s s

 

  

 

    

− − − −

+ − + − +
=

   
 = − + 
 + + + + 

  (39) 

 

2 2 2

1 2 1 1 1 1
0

1+ 1

( ) ( ) ( )

k
k k

q

k k
kq

rs s s

s s s r s s

 

  

 

    

− − − −

+ − + − +
=

   
 = − + 
 + + + + 

  (40) 

Introducing (37) and (38) into (39) and (40), applying the discrete inverse Laplace 

transform and using the known result: 

 
1

, , (d, )
( d)

b

a b ca c

s
L G t

s

−
  

= 
−  

 

where the generalized G-function and (c)j is the Pochhammer polynomial [24]: 

 
( ) 1

, ,

0

Γ( )d
(d, )

Γ( )Γ( 1) Γ[( ) ]

j j c a b

a b c

j

c j t
G t

c j j c a b

+ − −

=

+
=

+ + −
  (41) 
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we obtain the following expressions for the velocity field: 

 

2 22 2 2
1 22 1

2 2 2
1 02 2 1 1 2

( ) ( )π
( , )

2 [ ( ) ( )]

k

p p p

p kp p p

J R r B rr rr R R ft f
r t

r R r J R r J R r

 


  

 

= =

 −
 = − −
 −

   

 1 1
, 2, 1 , 2, 1[ ( , ) ( , )]k k k kG t G t    − −
− − + − − +− + −  (42) 

and 

 

2 2
0 21

2 2
2 1 01 1 0 2

( ) ( )π
( , ) ln

[ ( ) ( )]

k

q v q q

q kq q q

J R r B rr rgR t r g
v r t

R r J R r J R r



  

 

= =

  
 = − − 
 − 

   

 1 1
, 2, 1 , 2, 1[ ( , ) ( , )]k k k kG t G t    − −
− − + − − +− + −   (43) 

In view of the definitions (41) of the generalized function G, the shear stress ( , )r t
and ( , )v r t clearly satisfy the initial condition (7). We can easily obtain that 2( , ) 0,R t =

2( , ) 0.v R t =  

Calculation of the shear stress 

Applying the Laplace transform to (3)-(4), and using the initial condition (7), we 

find that: 

 1

1
( , ) ( , )

1
r s r s

r rs


 


 
= − 

 +
 (44) 

 2

( , )
( , )

1

v r s
r s

rs






=

+
 (45) 

so 

 

2
2 2 1 2
2 1

2 2 2 2 2
12 2 1 1 2

2
( )[ ( ) ( )]

21 π
( , )

2 [ ( ) ( )]

p p p p

p p p p

J R r r B rr B rr
R fR f rr s

r r r R s r J R r J R r

 






=

−
 
− = − 

  −
  

 
1 2

1

( )p

s

s s s r







 +

+

+ +
 (46) 

and 

 

2
0 21

2 2 2 1 2
1 1 1 0 2

( ) ( )( , ) π 1

( ) ( ) ( )

q q

q q q q

J R r B rrRv r s g g s

r r s J R r J R r s s s r








  



+
=

 +
= +

 − + +
  (47) 

Introducing (46) and (47) into (44) and (45), we can obtain: 

 

2
2 1 2
1

1 2 2 2 2 1 2
1 2 1 1 2

2
( )[ ( ) ( )]

1 1
( , ) π

1 [ ( ) ( )] ( )

p p p p

p p p p p

J R r r B rr B rr
R f srr s f
r s s r J R r J R r s s s r

 

 




  



+
=

−
+

= −
+ − + +

  (48) 
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and 

 

2
0 21

2 2 2 2 1 2
1 1 1 0 2

( ) ( )1 1
( , ) π

1 ( ) ( ) ( )

q q

q q q q

J R r B rrR g s
r s g

r s s J R r J R r s s s r




 




  



+
=

+
= +

+ − + +
   (49) 

Applying again the discrete inversion Laplace transform to the obtained results, we 

find the expression of shear stress in the following form: 

 

2
2 1 2

11
1 , 22 2 2

1 2 1 1 2

2
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and 
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In view of the definitions (11) and (41) of the generalized functions R and G, the 

shear stress 1( , )r t and 2 ( , )r t clearly satisfy the initial condition (7) and the boundary condi-

tion (8)-(10).  
In the special case when 1, →  eqs. (42), (43), (50), and (51) can be simplified as 

the Classical Maxwell fluid. By letting 0 → into eqs. (52) and (55), we can also obtain the 

corresponding conclusion for the Newtonian fluid. 
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Nomenclature 

t – time, [s] 
T – Cauchy stress tensor, [Pa] 

x, y, z – co-ordinates, [m] 
V – velocity vector, [ms–1] 
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