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We present a variant of second order accurate in time backward differentiation 
formula schemes for the Cahn-Hilliard equation, with a Fourier collocation spec-
tral approximation in space. A three-point stencil is applied in the temporal dis-
cretization, and the concave term diffusion term is treated explicitly. An addition-
al Douglas-Dupont regularization term is introduced, which ensures the energy 
stability with a mild requirement. Various numerical simulations including the 
verification of accuracy, coarsening process and energy decay rate are presented 
to demonstrate the efficiency and the robustness of proposed schemes. 
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Introduction 

The Cahn-Hilliard (CH) equation [1], which describes two-phase and multiphase 
problems involving fluid interfaces and the effect of surface tensions, is one of the most im-
portant fluid mechanics models in mathematical physics. For any ϕ  H1(Ω), with Ω  R2, the 
Ginzburg-Landau energy functional of the CH model is given by:  
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in which Ω = (0, Lx) × (0, Lv), the positive constant ε stands for the parameter of the interface 
width and ϕ represents the difference of the phase concentration. The CH equation can be 
viewed as the H–1 conserved gradient flow of the energy functional (1):  

 3 2, with :t E       =  = = − −   (2) 

where a periodic boundary condition is imposed for both the phase field ϕ and the chemical 
potential μ. Owing to the gradient structure, the following energy dissipation: 
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holds. Furthermore, the equation is mass conservative d 0,t x



  with the periodic boundary. 

The CH equation is a fourth-order stiff non-linear PDE. To obtain accurate numeri-
cal solutions of such a problem, it is desirable to use high-order approximations in space and 
in time. There have extensive works to develop and analyze numerical schemes for the CH 
equation [2-4] and related models [5]. Among these results, the energy stability is an im-
portant issue since it plays an essential role for the long time numerical simulations. In partic-
ular, the convex splitting scheme should be addressed. The framework of convex splitting 
treats the convex part of the chemical potential implicitly and the concave explicitly and re-
sults in an unconditionally energy stable and uniquely solvable scheme. For example, see the 
finite element method [6], the mixed finite element method [7], and so forth. 

The backward differentiation formula (BDF) is an implicit method for the numerical 
integration of ODE and especially used for the solution of stiff PDE. The BDF scheme treats 
the approximation every time at the time step tn+1 and requires less computational effort for 
the non-linear solver, due to the simpler form and stronger convexity properties of the non-li-
near term. For the CH equation, a second-order BDF mixed finite element scheme is present-
ed by Yan et al. [8] and the similar idea also is used in [9]. The purpose of this paper is to 
construct and analyze a few second order in time semi-implicit Fourier collocation spectral 
schemes for CH equation by virtue of the BDF three-point stencil in the temporal approxima-
tion. An alternative Douglas-Dupont regularization term as (–ΔN)α(ϕm+1 – ϕm) is added, which 
can guarantee the energy stability, provided that the requirements of A are enforced for differ-
ent values of the parameter α. In more details, we proposed three schemes, named as BDF-0 
(corresponds to α = 0), BDF-1 (α = 1), and BDF-2 (α = 2), respectively. On the other hand, 
the long time simulation results for the coarsening process indicate the requirement of the 
larger time step. Therefore, an extra artificial diffusion term is also introduced. The results 
show theoretically and numerically that the BDF-2 scheme can achieve the best stability per-
formance. 

Notations of Fourier collocation  

spectral approximations 

Assume that Lx = Nxhx, Ly = Nyhy for some mesh sizes hx, hy > 0 and some positive 
integers Nx and Ny. For simplicity of presentation, we use a square domain, i.e. Lx = Ly = 1, 
and a uniform mesh size hx = hy = h, Ny = Ny = N. We will assume that N = 2K + 1 is always 
odd. All the variables are evaluated at the regular numerical grid (xi, yj), with xi = ih, yj = jh,  
0 ≤ i, j ≤ N. 

For a periodic function f over the given 2-D numerical grid, we define the grid func-
tion space: 

Gn: = {f:Z2 → R| f is periodic} 

Also, the zero-mean grid function subspace is denoted 
: { ,1 : 0}.n nG f G f f=  = =  For f  Gn, its discrete Fourier expansion is given by: 
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Its approximations to first and second order partial derivatives are given by: 
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and the corresponding collocation spectral differentiations in the y-direction can be defined in 
the same way. In turn, the discrete Laplacian, gradient and divergence become:  
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at the point-wise level. It is also straightforward to verify that : Δ .N N Nf f  =  
We also introduce the discrete operator ( .Δ )N

−−  For a grid function f of (discrete) 
mean zero: n ,f G  a discrete version of the operator ( Δ) −−  may be defined: 
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Detailed calculations show that the following summation-by-parts formulas are valid 
for any periodic grid functions n :,f g G   

 2,Δ , ,  ,Δ Δ ,ΔN N N N N Nf g f g f g f g= −  =  (6) 

Similarly, the following summation-by-parts formula is also available: for any 
0 :   

 
γ/2γ/2, ( Δ ) ( Δ ) ,( Δ )N N Nf g f g− = − −  (7) 

Since the CH eq. (2) is an H–1 gradient flow, we need a discrete version of the norm 
1H −  defined on Gn. Then, for any f Î Gn, we define 1/2

1, 2: ( Δ ) ,N Nf f−
− = − and the fol-

lowing summation-by-parts formula may be derived:  

 1 1/2 1/2, ( Δ ) ( Δ ) ,( Δ )N N Nf g f g− − −− = − −  

Moreover, the spectral approximations to the l2 inner product and norm are intro-
duced: 
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The fully discrete BDF scheme and energy stability 

In this section, we propose some BDF numerical schemes with Fourier collocation 
spectral approximation in space for CH eq. (2). In more details, a second order BDF discreti-
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zation at tn+1 is used for the temporal discretization. Following the convex splitting idea, the 
non-linear term and the surface diffusion term are treated implicitly, and the concave diffu-
sion term is handled by an explicit extrapolation formula. To ensure the energy stability of the 
numerical scheme, we also add a Douglas-Dupont regularization As(–DN)a(fm+1 – fm) and the 
values of A and a will be specified later. Furthermore, to understand the coarsening dynamics 
occurring on a very long time scale for small ,  an artificial diffusion term  
BD(fm+1 – 2fm + fm–1) has to be imposed. 

With the Fourier collocation spectral discretization in space, the second order accu-
rate in time BDF type numerical scheme can be formulated as follows: for m ≥ 1, given  
fm, fm–1Î Gn, find fm+1 Î Gn such that: 

 
1 1

1 3 1 2 13 4 Δ [( ) (2 ) Δ ]
2s

m m m
m m m m

N N

  
   

+ −
+ − +− +

= − − − −  

 1 1 1( Δ ) ( ) Δ ( 2 )m m m m m
N NAs B     + + −− − − + − +  (8) 

where s = T/M, A and B are the stability coefficients, a= 0,1  or 2 means a different numerical 
scheme which requires a corresponding different energy-stability condition for A. We denote 
the scheme (8) with a= 0 as BDF-0. Similarly, BDF-1 and BDF-2 are named for α = 1 and 
α = 2, respectively. For simplicity, on the initial step we assume 1 0 . −   

The second order BDF approximation (8) leads to a large region of absolute stabil-
ity, in which an explicit Adams-Bashforth extrapolation formula is used to stabilize the con-
cave term. The unconditional energy stability for the numerical scheme can be established and 
the uniquely solvability also can be straightforwardly obtained following a similar argument 
as in [8].  

Before proceeding into further analysis, we make an observation. It is clear that the 
numerical solution of the fully discrete second order scheme (8) is mass-conserving at the dis-
crete level if:  

 m 1
av ,m  − = =  then     1

av
m + =  

We will assume that av| | 1,   as is standard. 
We introduce a discrete energy, which is consistent with the continuous space ener-

gy (1), that is, for any periodic grid function n ,G   the discrete CH energy is defined as:  
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For the numerical scheme (8), we can not guarantee the energy EN is non-increasing 
in time, but we can guarantee the dissipation of the modified version via: 

 2 2
1,N 2

1 1( , ) : ( )
4s 2N N

B
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+
= + − + −  (10) 

which is also consistent with the continuous case (1) as 0s →  and 0.h →  
Theorem. For any 0B   and given 1, ,m m

nG −   the numerical schemes (8) are 
unconditionally energy stable under certain conditions for different values of a, i.e. for any 
positive integer 1 1,m M  −  the scheme (8) has the energy-decay property, with respect to 
the modified discrete energy: 

 1 1 0 1
0( , ) ( , ) ( , )m m m m

N N N C     + − −    (11) 
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provided that the following condition holds: (1) 4[1/(4 )]A   for BDF-0 scheme, (2) 
1/(2 )A s  for BDF-1 scheme or (3) 1/16A   for BDF-2 scheme.  

Proof Taking a discrete inner product of (8) with 1 1( ) ( )m m
N  − +− −  yields: 
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 1 1 1 1( 2 ), ( ) ( )m m m m m
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The temporal term could be evaluated: 
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For the non-linear term, the following estimate is valid: 
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in which the Young inequality / / ,1/ 1/ 1, ( 4/3, 4)p qab a p b q p q p q + + = = =  is applied. 
For the surface diffusion term, we get:  
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In turn, for the concave term and the artificial diffusion term, we get:  
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and  

  1 1 1 1 1 2 1 2
2 2
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Now, we consider the stabilizing term: 

 1 1 1( ) ( ), ( ) ( )m m m m
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for different values of a. 
Case I: if 0, =  it follows from (17) that: 
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Therefore, the combination of (13)-(16) and (18) yields that: 
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Note that: 
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From eq. (20), we have: 
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which indicates 1 1( , ) ( , )m m m m
N N   + −  provided that 4(1/4 ) .A   

Case II: if 1, =  (17) becomes: 
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Similarly, the following inequality is valid.,  
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Accordingly, we have:  
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Letting 2( 2 / 1/2) 0,s As + −   we get 2 31/(2 ) 2 / 1/(2 ).A s s s −   Therefore, 
in this case, if 1/(2 ),A s  (11) also holds. 

Case III: if 2, =  (17) becomes:  
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and a similar result is obtained: 
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Clearly, if the coefficient 2(2 ( /2)/ 1/2) 0,As s+ −   that is, 21/16 /(2 )A s −  or 
the mild low bound 1/16,A  , we also get (11). This completes the proof.  

Accuracy test 

In this subsection we perform a numerical accuracy check for the fully discrete sec-
ond order scheme (8). The 2-D computational domain is set to be 2Ω (0,1) ,=  and the exact 
profile for the phase variable is given by  

 ( , , ) sin(2π )cos(2π )cos( )x y t x y t =  (27) 

To make F satisfy the original PDE (2), we have to add an artificial, time-dependent 
forcing term. For exploring the temporal accuracy, we compute solutions with grid sizes  
N = 16-256, and the errors are reported at the final time T = 1. The time step is determined by 
the linear refinement path: s = 0.5h, where h is the spatial grid size. We choose parameters: 

2 0.01, 1, 1.A B = = =  Table 1 shows the discrete ‖·‖2 norms and the convergence orders of 
the errors between the numerical and exact solutions for the scheme BDF-0, BDF-1, and 
BDF-2, respectively.  

Table 1. The ‖·‖2 errors and the orders with ε2 = 0.01, A = 1, B = 1 

Scheme BDF-0 BDF-1 BDF-2 

N  ‖·‖2 order ‖·‖2 order ‖·‖2 order 

16 1.7489·10–3 – 2.8452·10–3 – 5.3985·10–2 – 

32 4.4570·10–4 1.972 7.4494·10–4 1.933 1.9654·10–2 1.457 

64 1.1175·10–4 1.995 1.8889·10–4 1.979 5.8520·10–3 1.747 

128 2.7893·10–5 2.002 4.7361·10–5 1.995 1.5538·10–3 1.913 

256 6.9625·10–6 2.002 1.1843·10–5 1.999 3.9521·10–4 1.975 
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Coarsening processes and energy dissipation in time 

A numerical simulation result of a physics example is presented in this subsection. 
In particular, the long time evolution scaling law for certain physical quantities, such as the 
energy, has caused a great deal of scientific interests, with the assumption that the interface 
width is in a much smaller scale than the domain size, i.e., min{ , },x yL L  with 
Ω (0, ) (0, ).x yL L=   A formal analysis has indicated a lower decay bound as t–1/3 for the en-
ergy dissipation law, with the lower bound typically observed for the averaged values of the 
energy quantity.  

We compare the numerical simulation result with the predicted coarsening rate, us-
ing the proposed second order scheme BDF-2 in (8) for the CH flow (2). The diffusion pa-
rameter is taken to be ε2 = 0.005. For the domain we take Lx = Ly = L = 12.8  and h = L/N, 
where h is the uniform spatial step size. For such a value of ε, our numerical experiment has 
shown that N = 256 is sufficient to resolve the small structures in the solution. 

For the temporal step size s, we use increasing values of s in the time evolution. In 
more detail, s = 0.004 on the time interval [0,100], s = 0.01 on the time interval [100,1000], 
and s = 0.02 on the time interval  [1000, 2000]. Whenever a new time step size is applied, we 
initiate the two-step numerical scheme by taking 1 0 , − =  with the initial data f0 given by 
the final time output of the last time period. Figures 1 and 2 present time snapshots of the 
phase variable f with ε2 = 0.005. A significant coarsening process is clearly observed in the 
system. At early times many small structures are present. At the final time t = 2000, a single 
interface structure emerges, and further coarsening is not possible. 

 
Figure 1. Snapshots of the phase variable at (a) t = 1 and (b) t = 10  

(for color image see journal web site) 

  
Figure 2. Snapshots of the phase variable at (a) t = 200 and (b) t = 2000  

(for color image see journal web site) 
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The long time characteristics of the solution, especially the energy decay rate, are of 
interest to material scientists. Recall that, at the space-discrete level, the energy, EN is defined 
via (9). To facilitate the energy scaling analysis, we add a constant Ω /4  to the energy intro-
duced by (1):  

 
2

4 2 2

Ω

1 1 1 1( ) | | d ( ) | Ω |
4 2 4 2 4

E x E


    
 

= − + +  = +  
 
  (28) 

As a result, this energy is always non-
negative. Figure 3 presents the log-log plot for 
the energy vs. time, with the given physical pa-
rameter ε2 = 0.005 (the line 1 represents the en-
ergy plot obtained by the simulations, while the 
line 2 is obtained by least squares approxima-
tions to the energy data only up to about time t 
= 200). The detailed scaling exponent is ob-
tained using least squares fits of the computed 
data up to time. A clear observation of the atb 
scaling law can be made, with a = 10.7394, b = 
–0.3608. In other words, an almost perfect t–1/3 
energy dissipation law is confirmed by our nu-
merical simulation. 

Conclusion 

In this paper, we have presented some energy-stable second order in time BDF nu-
merical schemes for the CH equation with the Fourier collocation spectral approximation in 
space. 

The energy stability properties of three proposed BDF schemes which are designed 
for large-system and long-time simulations are analyzed. Numerical experiments also have 
shown the second order accuracy and long time coasening results. 

Nomenclature  

A, B – adjustable parameters 
Dx – first order partial derivative 

2D x  – second order partial derivative 
E  – energy functional 
εN – modified energy functional 

,l̂ mf  – Fourier coefficient 
h – spatial step size 
s – temporal step size 
t – time 
Gn – grid function space 
D – Laplacian operator 
Ñ – divergence operator 
DN – discrete Laplacian operator 
ÑN – discrete divergence operator 

Greek symbols 

f – phase variable 
fm – numerical solution at tm 
df  – variation in f 
m – chemical potential 
ε – interface width 
W – domain  

m  – mean value of numerical solutions 

Acronyms 

BDF – backward differentiation formula 
CH – Cahn-Hilliard 
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