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In this paper we present a second order numerical scheme for the Cahn-Hilliard 
equation, with a Fourier pseudo-spectral approximation in space. An additional 
Douglas-Dupont regularization term is introduced, which ensures the energy 
stability. The bound of numerical solution in 

2
hH  and 


 norms are obtained at 

a theoretical level. Moreover, for the global nature of the pseudo-spectral meth-
od, we propose a linear iteration algorithm to solve the non-linear system, due to 
the implicit treatment for the non-linear term. Some numerical simulations verify 
the efficiency of iteration algorithm. 
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Introduction 

The Cahn-Hilliard (CH) equation [1], which models spinodal decomposition and 

phase separation in a binary alloy, is one of the best known gradient flow type models in 

mathematical physics. For any 1( )H   , the energy is given by:  
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( ) d

4 2 2
E x


   



 
= − +    

 
  (1) 

where ε is a positive constant that dictates the interface width and the CH equation can be 

viewed as the H–1conserved gradient flow of the energy functional (1): 

 
3 2witht E       =   = = − −   (2) 

Here we consider dimension two and take the spatial domain Ω to be the usual 2π-

periodic torus. Subsequently, the energy dissipation law follows from an inner product with 

(2) by μ. Meanwhile, the equation also is mass conservative.  

The analysis for the CH equation turns out to be quite challenging, since it is a 

fourth-order, non-linear parabolic type PDE. Many numerical works have reported interesting 

computational results for CH equation [2-7]. Among these results, one usually investigates the 

semi-implicit or fully implicit numerical schemes because of the difficulties introduced by the 

combination of non-linearity and stiffness. Meanwhile, of these works, with a cut-off of the 

double-well energy and artificial stabilization term, Wu et al. [2] proposed a linear second-
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order scheme for CH type equations and diffuse interface tumor models. Guillen-Gonzalez 

and Tierra [3] presented a linearized second-order scheme with an alternate variable. Based 

on the modified version of the Crank-Nicolson discretization, a convex splitting finite differ-

ence scheme for CH equation was also reported in [4].  

Recently, spectral and pseudo-spectral schemes are often considered when high-

resolution solvers are sought for the CH equation. For the periodic boundary condition, the 

Fourier method is a natural choice to obtain the optimal spatial accuracy. For example, a con-

vex splitting Fourier collocation spectral scheme with an implicit treatment of non-linear 

terms has been discussed in [8].  

In this paper, a semi-implicit Fourier pseudo-spectral numerical scheme for CH 

equation with the BDF three-point stencil in the temporal approximation is discussed. The re-

sults show theoretically and numerically that the proposed scheme can achieve the best stabil-

ity performance. In addition, the energy stability of the proposed scheme also gives a uniform 

H1 bound at a discrete level. As a result, ℓ∞(0, T; H2) and ℓ∞(0, T; L∞) estimates of the numeri-

cal solution are proved. Similar to the linear iteration algorithm reported in [8] for the modi-

fied Crank-Nicolson scheme, the linear iteration solver is employed again for this scheme.  

Notations 

For simplicity of presentation, we use a square domain, i.e., L = 1 and a uniform 

mesh size hx = hy = h, Nx = Ny = N. We will assume that N = 2K +1 is always odd. All the var-

iables are evaluated at the regular numerical grid (xi, yj), with xi = ih, yi = jh, 0 ≤ I, j ≤ N.  
For a periodic function f over the given 2-D numerical grid, we define the grid func-

tion space:  

 2{ is periodic}NG f Z R f=  →   

As for definitions and properties of N and ΔN used in the next section, see the de-

tails in [8]. 

The spectral approximations to the ℓ2 inner product and norm are introduced as: 
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and the l∞ and 1pl p     norms for a grid function:  
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To obtain a pseudo-spectral approximation at a given set of points, an interpolation 

operator IN should be introduced. Given a uniform numerical grid with 2N + 1 points in each 

dimension and a discrete vector function f, where each point is denoted by (xi, yj) and the cor-

responding function value is given by fi,j, the interpolation of the function is: 

 ˆ( )( ) ( ) exp[2π ( )]
N

N

N l mc
l m N

I f x y i lx myf 

 =−

 = +  (4) 

where the (2N + 1)2 pseudo-spectral coefficients ˆ( )
N

l mcf  are given by the interpolation condi-

tion ( )( ).i j N i jf I f x y =    
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The following lemma enables us to obtain an Hm bound of the interpolation of the 

non-linear term; the detailed proof can be found in [9].  

Lemma 1. Suppose that m and K are non-negative integers, and N = 2K + 1. For any 

ϕ  PnK (with trigonometric polynomial up to degree nK) in Rd, we have the estimate: 

 ( ) rr

d
N HH

I n   (5) 

for any non-negative integer r.  

The fully discrete numerical scheme  

By the Fourier pseudo-spectral discretization in space, the second order accurate in 

time backward differentiation formula (BDF) type numerical scheme can be formulated as 

follows: for m ≥ 1, given φm, 1 ,m
NG −  find 1m

NG +   such that: 

1 1
1 3 1 2 13 4

[( ) (2 ) ]
2

m m m
m m m m

N N
s

  
    

+ −
+ − +− +

=  − − −  −  

 2 1 1 1( ) ( ) ( 2 )m m m m m
N NAs B    + + −− − − +  − +  (6) 

where s = T/M.  

To investigate the energy stability of eq. (6), we introduce the following modified 

discrete energy: 

 
2
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( , )

4 2 2 4 2
N N N

B
E

s


       

−

+
= − +  + − +  (7) 

The analogue results for the energy-decay property of eq. (6) can follow by an simi-

lar argument with suitable modification in [8]; the details are skipped for simplicity. 

Theorem 1. For any B ≥ 0 and given 1 ,m m
NG  −   the numerical eq. (6) is uncondi-

tionally energy stable, i.e., if A ≥ 1/16, we have: 

 1 1 0 1
0( , ) ( , ) ... ( , )m m m m

N N NE E E C     + − −     (8) 

Maximum estimate of the numerical solutions 

Lemma 2. Suppose that , 1,2,...,m
NG m M  = are the unique solutions to eq. (6). 

Then, we have the following estimates:  

 
11 2 3

4 2
, ,

h

m m m

H
C C C      (9) 

where C1, C2, and C3 are positive constants independent of s, h, and T.  

Proof. According to Theorem 1, the energy bound is given by: 

 1 0 1 0
0

2
24 2

4 2 2
,

1 1
( ) ( ) ( )

4 2 2
,m m

N NN NE E E C     


 − −  =+ −   (10) 

in which we applied the simplified initial value 1 0 . − =  Following the inequality for any
:Nf G  
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4 2 4
4 2 4

1 1 1 1
| Ω |

4 2 8 2
f f f−  −  (11) 

since: 

4 21 1 1
| | | | 0

8 2 2
f f− +   

holds at a point-wise level. Therefore, for all m ≥ 1, it follows from the discrete energy (8) 

that: 

 ( )
1/4

0 1
4

8 4 | Ω | :m C C  + =  (12) 

Next, according to the following fact: 

 
22 2

0
2 2

( )
1

| Ω |
2 2

m m m
N NE C   + −    (13) 

we obtain directly the estimates:  

 0
0 2 322 2

2 2 | Ω |
2 2 | Ω | : , :m m

N

C
C C C 

+
 + =   =  (14) 

Finally, applications of the Sobolev inequality and the Poincare inequality yield 

1 3.
n

m

H
C   

For the term associated with the cubic non-linear part in eq. (6), the following esti-

mate is given.  

Lemma 3. Suppose that ϕm  GN, m = 0, 1,…, M are defined as in Lemma 2. Then, 

we have the following estimates:  

 2
2

4
2

/3

2

3[( ) ] Δm m
N NC    (15) 

where 7/3
4 3: 3C CC=  is also independent of s, h, and T. 

Proof. Denote m
S  is the continuous extension of the discrete grid function ϕm, with 

the interpolation formula given by (4). Due to 3
3)[( ]m

S K  , applying Lemma 1 (n = 3, d = 2) 

and the Holder inequality, we have: 

 
2 2

3 3 2 3

2
Δ ( Δ ([ ) ] [ ) ] ( 3 [Δ ( ) ])m m m

N N S S
L L

  =   (16) 

At the same time, it follows from the standard expansion: 

 
2

3 2) ] )Δ[( 3( Δ 6m m m m m
S S S S S    = +   (17) 

that: 
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2

2
2/3

/3
3
7 Δ m

S
L

CC   (18)   

in which the Sobolev embedding from H1 into L6 and the Gagliardo-Nirenberg inequality are 

repeatedly applied. Hence, a combination of (16), (18) and the equality 
2

2 2

2
Δ Δm m

S N
L

 =  

indicates the result (15). 

We note that the 1

hH
 estimate of the numerical solutions obtained in Lemma 2 is not 

sufficient to derive an maximum bound in the 2-D case for the CH equation. We need an 

2

hH
  bound to obtain point-wise control of the numerical approximation.  

Theorem 2 Assume an initial data 0 2 ( )perH   and A ≥ 1/16. Then, the following 

bound is valid for the numerical solution given by the approximation eq. (6):  

 ( )2
20, ; 0

: max
h

m
ST H Hm M

C 

 
=   (19) 

where sM = T and 0C   is a constant independent of h and s, but dependent of T. Moreover, 

the ℓ∞ bound of the numerical solution: 

 
(0, ; )

ˆ ,    0
l T l

C m      (20) 

is valid.  

Proof. Taking the discrete inner product of (6) with 12
N

m +  gives:  

1 1
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N
m
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m

N
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s
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   

  
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  

 
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+ − +
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 1 21 1( 2 ),m m m
N N

mBs    + − +− +   (21) 
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Applying the summation-by-parts with periodic boundary condition, we have: 

1 1 1

1 1 1

2 2 2
1 1

2 2 2

2 2 2
1 1

2 2

2
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1
3 4 ,

2

1
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)
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)
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 
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 

 
− − + − = 
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1m m+= −  (22) 

where
2 2 2

1 1 1

2 2 2

3 1 1

4 4 2
( )m m m m

N N
m

N   + + +−  − +=  . 

For the stabilizing term, the following identity is valid: 

 
2 2 2

1 1 1 1

2 2 2

2 2 2 2 21 1
)( (, )

2 2

m m m m m m
N N N N N

m      + + + + 
− = − + − 





     (23) 

Similarly, the surface diffusion term can be handled: 

 
2

1 1 12 2

2

2,m m
N

m
N N  + + +  =  (24) 

In turn, we apply the Cauchy inequality and ε-inequality to the concave term, and 

get: 

1 2 1 1 2 1
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     

   


   
 
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+ −
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− −  −  
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2 2 2

2 1 2 2 1
5

2 2 2
Δ 2 Δ Δ ( )

2

m m m
N N N C


     + − + + +  (25) 

for any β ≥ 0, in which the inequality (a + b)2 ≤ 2(a2 + b2) and: 

 
22 2 2 2

2 2 2 2

22 2

2 2

2 2 2

1
Δ , Δ Δ

4 4
N NN N

C
       

 
=  +  +  (26) 

For ℓ = m, m – 1 are also used.  

The estimate for the last term on the RHS of eq. (21) is similar to that of the concave 

diffusion term. First, we will need the following weighed Sobolev inequality: 

 
2 2/3 4/3 4/3 2

3/2 2 2/3 2 2
3 5

2 2 2 2 2
( ) l l l l l

N N N N NC CC C
B


    −       +   (27) 
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for any β > 0, where 5 0C  depends on B, β, and C3. Then, using the summation-by-parts 

formula and the Cauchy inequality, we have: 

2 1 1 1

3/2 3/2 3/2

3/2 3/2

3

2
1 1

2

1 1

2
/2 3/2 3

2 2
1 1

2

/

2
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2

Δ ,Δ ( 2
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)
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   

  

 
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+ −

− + =
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2 1 2 2 1

5
2 2 2

3 Δ Δ Δ
2 2

m m m
N N NC

B B B

  
  + − + + +   (28) 

Next, we consider the inner product associated with the non-linear term. According 

to Lemma 3, we arrive at: 

5/3
31 3 2 1 1 2 1 2 1

4
2 2 2

Δ ( ,Δ) )Δ ( Δ Δm m m m m
N N N N NC    + + + + +     

 

2
2

6 2 1 2 1
4 6

2

2

2

2

Δ Δ
4 4

m m
N NC C C  

 + + +  +  (29) 

in which 6
6 4C C C=  and the Young inequality (p = 6, q = 6/5) is applied in the last step. 

Therefore, a combination of eqs. (27)-(29) yields: 

2 2
2 2

1 2 2 1 2 1

2 2

3 3
Δ (

2
)Δ

2 4 2

m m m m m

N N

As As
s s    + + + 

− + − + + − 





 

 
2

2 2
2 2 1

72 2
3 Δ Δ

2

m m

N N

As
s s C s    − 

 + + + 
 

 (30) 

where 7 5 5 6( ) ( )C C C C = + + and
1,m m+
are defined in eq. (22).  

Choosing β = ε2/8 fixes C7 from previous inequality, we have: 

2 22 2
1 2 2 1 2 1

2 2

9
Δ Δ

2 16 2
( )m m m m m

N N

As As
s   + + +

 
− + + + −   

 
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2 2 2 2 1
7

2 2

6 1
Δ Δ

2 16 8

m m
N N
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s s C s    −

 
 + + +  
 

 (31) 

where C7 is a constant due to the fixed β.  
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Adding the term
2

2 2

2
Δ /8m

Ns   to both sides gives: 

2 22 2 2
1 2 2 1 2 2 2 1

2 2 2

9 1
Δ Δ Δ

2 16 8 2
( )m m m m m

N N N

As As
s s     + + +

 
+ + + + −   
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2 2 2

2 2 2 2 1
7

2 2

8 1
Δ Δ

2 16 8

m m m
N N

As
s s C s    −

 
 + + + +  

 

 (32) 

Now, we define a modified energy: 

 
2 2 2

2 2 2 2 1

2 2

8 1
: Δ Δ

2 16 8

m m m m
N N

As
s s    −

 
= + + +  

 
 (33) 

Then, it follows that: 

 
22 2

1 2 2 1 2 1
7
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1
Δ Δ (

1 2
)

6

m m m m m
N N
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s C s   + + ++ + −  +  (34) 

which shows that: 

 
1

0 0
7 7 8

1
:

j

m
m C s C T C

−

=
 +   + =  (35) 

Note that: 

2 2 2 2
1 1

2 2 2 2

2 2
1
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) =
3 1 1 1

Δ Δ Δ ( Δ

(

4 4 2 4

1 1
Δ 2 Δ

4 4
)

m m m m m m
N N N N

m m m
N N

    
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− −

−

= − + − +

+ − 

. 

Then, it follows from eqs. (31)-(35) that: 

 
2

8
2

Δ 4 4 4m m m
N C     (36) 

From Lemma 3, the following result is made:  

2 2
1 1 2

2 8 9
2 2

Δ 4 :m m
N C C C + ++  + =  

To conclude, we employ the elliptic regularity and have:  

 ( ) ( )2 2 2 9
2 2

Δ Δ :m m m m m
S S S N

H L L
C C C C     + = +  =  (37) 

In addition, we observe the following Sobolev inequality: 

2
: , 0m m m

S S
L H

C CC C m


     =    

where the first estimate is based on the fact that ϕm is the point-wise interpolation of its con-

tinuous extension m
S  which gives the l∞ bound of the numerical solution. This finishes the 

proof. 
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Linear iteration solver 

In this section, we propose a linear iteration method to solve the eq. (6). The eq. (6) 

can be reformulated as a closed equation: 

2 2 2 2 13
Δ Δ Δ

2

m
N N NAs s Bs  + 

+ + − 
 

=  

 ( )2 2 131 1
Δ 2 2 Δ Δ 2 Δ ( 1)

2
( ) Δm m m

N N N N Ns s As Bs B s  + − 
= + − + − + + − 

 
 (38) 

where denotes the identity operator.  

Also, define a linear operator and the value fm associated with the mth and (m – 1)th 

levels: 

2 2 2 23
: Δ Δ Δ

2
N N NAs s Bs

 
= + + − 
 

 

 ( )2 2 11
: 2 2 Δ Δ 2 Δ ( 1) Δ

2

m m
m N N N Nf s As Bs B s  − 
= − + − + + − 

 
  (39) 

Then, eq. (38) can be simplified: 

 1 31(Δ )m m
N ms f + += +  (40) 

Obviously, the non-linear part in this equation is treated implicitly. To overcome the 

difficulty associated with the implicit treatment of the non-linear term, a linear solver is nec-

essary, and we propose the following linear iteration algorithm: 

 
3

1,( 1) 1,( )Δm k m k
N ms f + + + 
 

= +  (41) 

in which ϕm+1,(k) corresponds to the numerical solution at the kth iteration.  

Efficiency of iteration algorithm 

We present some numerical tests to verify the efficiency of the proposed scheme 

compared to the CN scheme in [8] solved by the iteration algorithm (41). Different values of 

the diffusion coefficient ε2 and the stability constants A, B are used. 

 Take the phase variable ϕ(x, y) = sin(2πx)cos(2πy) over the domain Ω = [0, 1]2 and 

fix N = 128. By setting 10–9 as the tolerance of iteration error, we record the average iteration 

time from T = 0 to T = 0.5 for eq. (6) and CN scheme in [8]. We fix A = 1, B = 1, and ε2 = 

0.01, 0.005, and 0.001 with different time step s1 = 0.01, s2 = 0.005, and s3 = 0.001 and the 

various results are reported in tab. 1.  

Table 1. The average iteration times for two schemes 

 Equation (6) CN scheme 

ε2 s1 s2 s3 s1 s2 s3 

0.01 6 4 2.5 5 3.6 2 

0.005 10 5 2.5 12 4 2 

0.001 34 12 6 130 24 2 
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Clearly, for small ε2, eq. (6) costs the lest computational effort, compared to the CN 

scheme. 
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Conclusion 

In this paper, we presented an energy-stable second order in time numerical scheme 

for the CH equation. Following the leading H1 estimate indicated by the energy stability, we 

establish a uniform in time bound of the numerical solution. As a result of this 2
hH  estimate, a 

discrete maximum bound is also available for the numerical solution. Moreover, we also use 

the linear iteration algorithm in which the non-linear system can be decomposed as an itera-

tion of purely linear solvers with more economical computational cost. 

Nomenclature 

x – space co-ordinate, [m] 
A, B – adjustable parameters, [–] 
 – divergence operator, [–] 
ΔN – discrete Laplacian operator, [–] 

Ω – domain, [m3] 
fl,m – Fourier coefficient, [–] 
E – energy functional, [–] 
h – spatial step size, [m] 
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