
Yang, X
 

 A  NEW  INSIGHT  ON  ANALYTICAL  THEORY  OF   

THE  SCALING  LAW  HEAT  CONDUCTION  ASSOCIATED  WITH 

THE  RICHARDSON  SCALING LAW 

by 

Xiao-Jun YANG
 a

, Pei-Tao QIU 

b,*

, and  Gang-Lin LIU
 c

 

a State Key Laboratory for Geo-Mechanics and Deep Underground Engineering,  

China University of Mining and Technology, Xuzhou, China 
b School of Civil Engineering, Xuzhou University of Technology, Xuzhou, China 

c No. 1 Middle School of Gangu in Gansu Province, Gangu County, Tianshui, China 

Original scientific paper 
https://doi.org/10.2298/TSCI2202025Y 

In this article, we propose a new model for the scaling law heat conduction equa-
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Introduction 

Jean Baptiste Joseph Fourier [1] proposed the theory of the well-known Fourier heat 

conduction equation in the 3-D case by: 
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where 2  is the Laplace operator and   is the thermal diffusivity of the medium. The 1-D 

heat conduction equation reads: 
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Richardson [2] suggested the well-known scaling law: 

 ( ) Dx x   (3) 

where (0, )   is the normalization constant, ( , )x    and (0, )D   is the scaling 

exponent. The scaling law derivative of the function ( )x  associated with the Richardson 

scaling law (3) is defined [3]: 
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The differential of the function ( )x  associated with the Richardson scaling law 

(5), denoted by d ( ),x  is [3]: 

 1 RSL ( )d ( ) (D ) D ( )dD n n
tx x x x      (5) 

The scaling law integral of the function ( )x  associated with the Richardson scal-

ing law (3) is defined [3]: 
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The scaling law indefinite integral of the function ( )x  associated with the Rich-

ardson scaling law (3) is defined [3]: 
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The improper scaling law integrals of the function ( )x  associated with the Rich-

ardson scaling law (3) are defined [3]: 
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The net change theorem for the scaling law integral associated with the Richardson 

scaling law (3) reads [3]: 

 (1)RSL RSL (1)( ) ( ) [ D ( )]a xbb a I x       (11) 

The properties of the scaling calculus associated with the Richardson scaling law (2) 

are [3]: 
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where s is a constant, and 0 / !
Dx n nD

ne x n 
   is the Kohlrausch-Williams-Watts function  

[4, 5]. The scaling law heat conduction equation may be used to describe the heat transporta-

tions in the sheared granular materials [6], carbon nanotube materials [7], and carbon nano-

tubes [8]. 

To solve the problems, the non-Fourier law [3]: 

 RSL ( , , , ) ( , , , )D x y z t Q x y z t     (17) 

was suggested, where   is the thermal conductivity of the scaling law materials, ( , , , )x y z t  

is the temperature distribution, and the scaling law gradient associated with the Richardson 

scaling law (3) is [3]: 
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and the scaling law Laplace-type associated with the Richardson scaling law (3) is [3]: 
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The main target of the paper is to set up the theory of the scaling law heat conduc-

tion associated with the Richardson scaling law (3), and to propose the theory of an scaling 

law series associated with the scaling law subtrigonometric series and Kohlrausch-Williams-

Watts function to solve the scaling law heat conduction equation in the 1-D case.  

Theory of a scaling law series associated with the  

Kohlrausch-Williams-Watts function 

In this section, we suggest analytical theory of a scaling law series associated with 

the Kohlrausch-Williams-Watts function analogous to the Fourier series.  

The Kohlrausch-Williams-Watts function is represented [9, 10]: 
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The scaling law series associated with the scaling law subtrigonometric series is: 
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where 0ˆ ,a  ˆ ,nb  and ˆnc  are the coefficients for the scaling law series of the function ( ).x   

It is observed that ˆ( ) ( ),Dx x   where ( )x  has the period 2π, and that ˆ ( )x  

can be expressed by the scaling law subtrigonometric series.  

This implies that: 
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It is easy to find that: 

 1 2

π/
1

1 2

π/

d π/ ( )

D

D D

D

in x in x De e x x D n n


 



 



   (29) 

 1 2

π/
1

1 2

π/

d 0 ( )

D

D D

D

in x in x De e x x n n


 



 



   (30) 

 1

π/
1

1

π/

d 0 ( 0)

D

D

D

in x De x x n










   (31) 

and 

 

π/
1

π/

d π/

D

D

Dx x D









  (32) 

Let us define the scaling law product of two functions 
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If:  
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where   is a constant, then two functions 
1
( )n x  and 

2
( )n x  are the weighted orthonormal 
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where /Da     and / .Db    

Now, by (14 a, b), we find  
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Thus, with the aid of (43)-(45), we have:  
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such that we determine the scaling law subtrigonometric series (21).  
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Let us define a scaling law series associated with the Kohlrausch-Williams-Watts 

function: 
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where ˆng  are the coefficient for the scaling law series of the function ˆ ( ).x  
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Let ˆ ˆ( ) [ ( ) ]D Dx x     with the period 2 .  Then we obtain: 
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The general theory of the scaling law series associated with the Kohlrausch-Wil-

liams-Watts function [10]. 
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Theory of the scaling law heat conduction 

Let us recall that the non-Fourier law [3]: 

 RSL ( , , , ) ( , , , )D x y z t x y z t   Q  (57) 

where   is the constant, and:  
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where υ is the specific heat capacity and ρ is the density (mass per unit scaling law volume) of 

the scaling law material.  

Connected with (57) and (58), we obtain the scaling law heat conduction equation: 
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This implies that the scaling law heat conduction equation reads:  
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If   is a constant, then the scaling law heat conduction equation:  

 1 RSL 2( , , , )
( ) ( , , , )D

D

x y z t
Dt x y z t

t
  

  


 (61) 

where /( )    is the thermal diffusivity of the medium. 

The 1-D scaling law heat conduction equation can be expressed: 

 
2

1 2 2 2( 1)

2

( , ) ( , )
( ) [ ]D Dx t x t

Dt D x
t x

     


 
 (62) 

subject to the initial and boundary conditions: 

 ( ,0) ( )x v x   (63) 

and 

 (0, ) ( , ) 0t L t    (64) 

where [0, ]x L  and 0.t   

Analytical solution for the scaling law heat  

conduction equation in the 1-D case 

Suppose that: 

 ( , ) ( ) ( )x t t x    (65) 

such that: 
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2

1 2 2 2( 1)

2

[ ( ) ( )] [ ( ) ( )]
( ) [ ]D Dt x t x

Dt D x
t x

        


 
 (66) 

which leads to: 

 
 

2
2 11 2 2

2

( ) ( )
( )( ) ( )[ ]

DD t x
x Dt t D x

t x
  

   
  

 
 (67) 

This implies that: 

 
2

1 2 2 2( 1)

2

1 ( ) ( )
( ) [ ]

( ) ( )

D Dt x
Dt D x

t t x x


    


   

 (68) 

Let: 

 11 ( )
( )

( )

D t
Dt

t t
  

 
 

 (69) 

such that: 

 
2

2 2 2( 1)

2

( )
[ ]

( )

D x
D x

x x


   

 
 

 (70) 

where   is a constant.  

Thus: 

 1 ( )
( ) ( )D t

Dt t
t

  
 


 (71) 

and 

 
2

2 2 2( 1)

2

( )
[ ] ( )D x

D x x
x

   
  


 (72) 

where / .   

According to [9, 10], we find that:  

 ( )
Dtt e     (73) 

and 

 1 2( ) cos( ) sin( )D Dx x x     (74) 

where  , 1,  and 2  are the constants.  

Since:  

 (0, ) ( , ) 0t L t    (75) 

then 1 0   and:  

 2( ) sin( ) 0Dx L    (76) 
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Here, we have ,DL n   which leads to:  

 

2
π
D

n

L




 
   

 
 and 

2
π
D

n

L




 
  
 

 

Thus: 

 
1

π
( ) ( )sin ( )D

D
n

n
x n x v x

L






 
   

 
  (77) 

which yields that 

 1 1

0

π
( ) ( )sin d 2 ( )sin d

L L
D D D D

D D D D
L

D D
n v x n x x x v x n x x x

L L L L


  



   
    

   
   (78) 

From (73) and (77) we have 1  such that: 

 

2
π

1

π
( , ) ( )sin

D

D

n
t

D L

D
n

n
x t n x e

L

 


    
 



 
   

 
  (79) 

Conclusion 

This work studied the scaling law heat conduction process associated with the Rich-

ardson scaling law and the analytical theory of the scaling law heat conduction equation asso-

ciated with the Richardson scaling law. We also proposed the theory of the scaling law series 

associated with the Kohlrausch-Williams-Watts function. The result is important for us to find 

the scaling law series solutions for the scaling law PDE in mathematical physics. 
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Nomenclature 

x, y, z – space co-ordinates, [m] 
t – time, [s] 

Greek symbols 

γ – heat conductivity, [Wm–1K–1] 

Ξ(x, y, z, t) – temperature, [K] 
ρ – density, [kgm–3] 
υ – specific heat capacity, [Jkg–1K–1] 
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