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Introduction 

To consider the dissipation principle of the non-linear wave propagation, the Benja-

min-Bona-Mahony (BBM) equation [1] is proposed in the study of long waves in non-linear 

dispersion systems. Authors [2, 3] studied the attenuation of its solution, and the existence, 

uniqueness and convergence of the solution of BBM equation are also proved in [4-6]. Vari-

ous numerical methods also have attracted the attention of many researchers [7-16]. In this 

paper, the following initial value condition and boundary value conditions of BBM equation 

are considered. Moreover, the following problem: 

 0t xxt x xx xu u u u uu− + − + = , ( , ) ( , ) (0, ]L Rx t x x T   (1) 

 0( ,0) ( )u x u x= , [ , ]L Rx x x  (2) 

 ( , ) ( , ) 0L Ru x t u x t= = , [0, ]t T  (3) 

has the conserved quantities [15]; 

 ( ) ( , )d ( )d (0)
R R

L L

x x

x x

Q t u x t x u x x Q= = =   (4) 

where 0 ( )u x is a smooth functions and Q(0) is a constant only related to the initial conditions. 

In recent years, numerous numerical methods have been proposed for solving BBM 

eqs. (1)-(4). Huang et al. [15] proposes a two-layer non-linear Crank-Nicolson difference 

scheme with the theoretical accuracy of 2 4( )O h +  for problem (1)-(3) in which the non-li-

near iteration is required for numerical solutions. Zhang et al. [16] put forward a three-level 
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linear difference scheme with the theoretical accuracy of 2 4( ),O h +  which can improve the 

efficiency of numerical solutions. However, this scheme is not self-starting.  

In this paper, following the aforementioned work, the discretization of the non-linear 

term xuu  is used by a two-level linearization, and a two-level linearization difference scheme 

of the theoretical accuracy 2 4( )O h + is obtained for problem (1)-(3), the conserved quantity 

(4) is reasonably simulated. Since only the data of the previous time layer need to be stored, 

the advantages of linear scheme without non-linear iteration are maintained in numerical solu-

tions. That is, the proposed scheme has higher numerical efficiency, and the numerical results 

also show that the accuracy is obviously better than the other high-accuracy schemes in [15]. 

The finite difference scheme and conservation law 

Firstly, for the domain [xR, xL]×[0, T], let h = (xR – xL)/J be the step size for the spa-

tial grid, and τ be the step size for the temporal direction such that xj = xL + jh(0 ≤ j ≤ J),  

tn =nτ (n = 0, 1, 2,…, N, N = [T/τ]). 
Denote: 

0
0( , ), ( , ), { ( ) 0, 0,1, , 1, }n n

j j n j j n h j Ju u x t U u x t Z U U U U j J J=  = = = = = −  

and 

 
1

( ) ,

n n
j jn

j x

U U
U

h

+ −
=  

1
( ) ,

n n
j jn

j x

U U
U

h

−−
=  

1 1
ˆ( )

2

n n
j jn

j x

U U
U

h

+ −−
=  

 

1

( ) ,

n n
j jn

j t

U U
U



+ −
=

1 1

2

2

n n
n j j

j

U U
U

+
+ +

=  

1

1

, ,
J

n n n n
j j

j

U V h U V
−

=

=   
2

, ,n n nU U U=  
1 1
max ,n n

j
j J

U U
   −
=  

2 2
( )

4

n n
j jn

j x

U U
U

h

+ −−
=  

We propose a two-level linear finite difference scheme for the initial boundary value 

problem (1)-(3):  

 

1 1

2 2
ˆ ˆ ˆ

4 1 4 1
( ) ( ) ( ) ( ) ( )

3 3 3 3

n n
n n n
j t j j x xt j x j xxxt

U U U U U
+ +

− + + − −  

 

1 1

1 12 2
ˆˆ 1 2

4 1
( ) ( ) ( , ) ( , ) 0

3 3

n n
n n n n

j xx j xx j j j jU U P U U P U U
+ +

+ +− + + − =  

 1,2, , 1, 1,2, , 1j J n N= − = −  (5) 

 0
0 ( ), 0,1,2, ,j jU u x j J= =  (6) 

 0 , 0,1,2, ,n
hU Z n N =  (7) 

where  

 1 1 1
ˆ ˆ1

2
( , ) [ ( ) ( ) ]

3

n n n n n n
j j j j x j j xP U U U U U U+ + += +  

and 

 1 1 1
2

1
( , ) [ ( ) ( ) ]

6

n n n n n n
j j j j x j j xP U U U U U U+ + += +  
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Let ( , )u x t be the solution of problem (1)-(3), ( , ).n
j j nu u x t=  The truncation error of 

(1)-(3) is in the following:  

 

1 1 1 1

2 2 2 2
ˆ ˆ

ˆ ˆˆ

4 1 4 1 4 1
( ) ( ) ( )

3 3 3 3 3 3

n n n n
n n n n
j j t j j x xt j j j jxxt

x x xx xx

r u u u u u u u
+ + + +       

       = − + + − − + +
       
       

 

 1 1
1 2( , ) ( , ), 1,2, , 1, 1,2, , 1n n n n

j j j jP u u P u u j J n N+ ++ − = − = −  (8) 

 0
0 ( ), 0,1,2, ,j ju u x j J= =  (9) 

 0 , 0,1,2, ,n
hu Z n N =  (10) 

By the Taylor expansion, we know that: 

 
2 4( )n

jr O h= +  (11) 

holds if h, τ→0. 

Theorem 1 The difference scheme (5)-(7) is conserved with respect to the following 

discrete energy, i.e.: 

 
1

1 0

1

, 1,2, ,
J

n n n
j

j

Q h U Q Q n N
−

−

=

= = = = =  (12) 

Convergence and stability 

Lemma 1 [16] For any 0 ,hU Z  there has always ˆ .x x xU U U   

Lemma 2 [15] Suppose that 1
0u H , then the solutions of the initial boundary value 

problem (1)-(3) satisfy 
2

,
L

u C  
2

,x L
u C  .

L
u C



  

Theorem 2 Suppose 1
0 .u H  For sufficiently small temporal step and spatial step 

h, the solutions of scheme (5)-(7) converge to the solution of the initial boundary value prob-

lem (1)-(3) with the convergence order of 2 4( )O h +  by the norm 

  for .nU  

Proof. Subtracting (8)-(10) from (5)-(7) and letting n n n
j j je u U= − , we have:  

 

1 1 1 1

2 2 2 2
ˆˆ

ˆ ˆˆ

4 1 4 1 4 1
( ) ( ) ( )

3 3 3 3 3 3

n n n n
n n n n
j j t j xxt j xxt j j j j

x x xx xx

r e e e e e e e
+ + + +       

       = − + + − − + +
       
       

 

 1 1 1 1
1 1 2 2( , ) ( , ) ( , ) ( , )n n n n n n n n

j j j j j j j jP u u P U U P u u P U U+ + + ++ − − +  (13) 

 0 0, 0,1,2, ,je j J= =  (14) 

 
0 , 0,1,2, ,n
he Z n N =  (15) 

Next, we use the mathematical induction to prove the error estimates. From Lemma 
2 and eq. (12), there exist constants Cu, Cr, which are independent of τ and h, satisfy that: 
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 2 2, ( ), 1,2, ,n n
u ru C r C h n N

 
  + =  (16) 

It follows from (14) and the initial conditions (6) that the following estimates: 

 0 00, ue U C


=   (17) 

Suppose that: 

 
2 4( ), 2,3, , , 1l l

x le e C h l n n N+  + =  −  (18) 

where ( 2,3, , )lC l n= is also independent of τ and h. By the discrete Sobolev inequality [17] 

and the Cauchy-Schwarz inequality, we get: 

 ( ) 2 2
0 0 0

1 3
2 ( ), 1,2, ,

2 2

l l l l l l
x x le C e e e C e e C C h l n


 +  +  + =  (19) 

 2 2
0

3
( ), 2,3, ,

2

l l l
u lU u e C C C h l n

  
 +  + + =  (20) 

Taking the inner product of (13) with en+1/2 and using the summation by part [17], 

we get: 

 

22 11 1
2 2 2

22 2
ˆ ˆ

1 2 1 4 1
,

2 3 6 3 3

nn n
n n n n

x x x xt t t
e e e r e e e

++ +

+ − =   + − −  

 

1 1

1 1 1 12 2
1 1 2 2( , ) ( , ), ( , ) ( , ),

n n
n n n n n n n n
j j j j j j j jP u u P U U e P u u P U U e

+ +
+ + + +− − + −  (21)  

According to Lemma 2 and the mean value theorem, the following result: 

 
1 1 1 11

ˆ 1

( , ) ( , )
( ) ( , ),

2 j

j n j nn
j x n

u x t u x t
u u x t

h x


+ + − ++
+

− 
= =


1 1( )j j jx x− +   

holds, that is: 

 1
ˆ
n
x uu C+


  (22) 

Similarly, we have: 

 1n
x uu C+


   (23) 

If h and τ are sufficiently small and satisfy that: 

 ( ) 2 2
0

0

3
max ( ) 1

2
l

l n
C C h

 
+   (24) 
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then, it follows from (21)-(23) and the Cauchy-Schwarz inequality that: 

 

1

1 1 2
1 1( , ) ( , ),

n
n n n nP u u P u u e

+
+ +− − =  

 

1 11 1
1 1 1 12 2

ˆ ˆ ˆ ˆ

1 1

2 2
[ ( ) ( ) ] [ ( ) ( ) ]

3 3

J Jn n
n n n n n n n n
j j x j j x j j j x j j x j

j j

h e u U e e h u e e U e
− −+ +

+ + + +

= =

= − + − + =   

 

1 11 1
1 1 12 2

ˆ ˆ ˆ

1 1

2 2
[ ( ) ( ) ] ( )

3 3

J Jn n
n n n n n n
j j x j j x j j j x j

j j

h e u U e e h u e e
− −+ +

+ + +

= =

= − + − +   

 

21 1 11 2 2
1 12 2 2

ˆ

1
ˆ

2 1
( ) 2

3 3

J n n n
n n n n n
j j x j j j u x

j
x

h U e e e e C e e e
− + + +

+ +

=

   
   + +  + + +
         

  

 

2 2
1 1

2 2
2 4 1 12 2

0

1 3
( ) 2 2

3 2

n n
n n

u n x xC C C h e e e e
+ +

+ +

 
   + + + + + +       

 

 

2 2 2
11

2
3

n n n
u xC e e e + 

 + + 
 

( )
2 2 2 2

1 11
1 5 4 2

6

n n n n
u x xC e e e e+ + 

+ + + + + 
 

 (25) 

 

1

1 1 2
2 2( , ) ( , ),

n
n n n nP u u P U U e

+
+ +− =  

 

1 11 1
1 1 1 1 1 12 2

1 1

1 1
[ ( ) ( ) ] [ ( ) ( ) ]

6 6

J Jn n
n n n n n n n n
j j x j j x j j j x j j x j

j j

h e u U e e h u e e U e
− −+ +

+ + + + + +

= =

= − + + + =   

 

1 11 1
1 1 12 2

1 1

1 1
[ ( ) ( ) ] ( )

6 6

J Jn n
n n n n n n
j j x j j x j j j x j

j j

h e u U e e h u e e
− −+ +

+ + +

= =

= − + + +   

 

21 1 11 2 2
1 12 2 2

1

1 1
[( ) ( ) ] 2

6 12

J n n n
n n n n n
j j x j j j x u x

j

h U e e e e C e e e
− + + +

+ +

=

 
 + +  + + +
  
 

  

 

2 2
1 1

2 2
2 4 1 12 2

0

1 3
( ) 2 2

12 2

n n
n n

u n x xC C C h e e e e
+ +

+ +

 
   + + + + + +       

 

 

2 2 2
11

2
12

n n n
u xC e e e + 

 + + 
 

( )
2 2 2 2

1 11
1 5 4 2

24

n n n n
u x xC e e e e+ + 

+ + + + + 
 

 (26) 

and 

 

1
2 2 2

1 12
1 1 1

, ,
2 2 4

n
n n n n n n nr e r e e r e e

+
+ + 

  =  +   + +
  

 (27) 
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Substituting (25)-(27) into (21), we get: 

 
2 2 2 2 2 2

1 1 1
ˆ ˆ

4 1

3 3

n n n n n n
x x x xe e e e e e+ + +     

− + − − −      
     

 

 
2 2 2 2 2 2 2 2

1 1 11 5
2 2

2 12

n n n n n n n n
x x u xr e e e e C e e e   + + +     

 + + + + + + + +     
     

 

 
2 2 2 2

1 15
( 1) 5 4 2

24

n n n n
u x xC e e e e + + 

+ + + + +  
 

 

 
2 2 2 2 2

1 13 ( 1)n n n n n
u x xr C e e e e  + + 

 + + + + + 
 

 (28) 

Setting 

 
2 2 2

ˆ

4 1

3 3

n n n n
x xB e e e= + −  

and summing up (28) from 1 to n, we get: 

 
12 2 2

1 1

1 1

6( 1)
n n

n k k k
u x

k k

B B r C e e 
+

+

= =

 
 + + + + 

 
   (29) 

It follows from (16) and (28) that: 

 
2 2

2 2 4 2

1
1

max ( ) ( )
n

k k
r

k n
k

r n r T C h  
 

=

  +  (30) 

 1 2 2 4 2
1 ( )B C h= +  (31) 

Then, substituting (30) and (31) into (29), and applying the discrete Gronwall ine-

quality [17], if h and τ are sufficiently small and satisfy that /1 [12( 1)],uC  +  we get: 

 

2 2
2 [6( 1)]1 1 1 2 2 2 4 2

1

2 2 4 2
1

[ ( ) ]( )

( ) ( ) , 1,2, , 1

uT Cn n n
x r

n

e e B T C C h e

C h n N





++ + +

+

+   + + 

 + = −

 

where 

 
6 ( 1)

1 1( ) uT C
n rC TC C e

+
+ = +  

Obviously, 1nC +  is a constant independent of n. Therefore, by the mathematical in-

duction, we get: 

 
2 4 2 4( ), ( ), 1,2, ,n n

xe O h e O h n N  +  + =  

Finally, it follows from the discrete Sobolev inequality [18] that: 

 2 4( ), 1,2, ,ne O h n N

 + =  

Theorem 3 Suppose that 2
0 .u H  If h and τ are sufficiently small, then the solutions 

of difference scheme (5)-(7) satisfy 0 , 1,2, , ,nU C n N

 =  where 0C is also independent 

of τ and h. 
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Proof For sufficiently small h and τ, by Theorem 2, we get: 

 0
n n nU u e C

  
 +   

Remark 1. Theorem 3 shows that the numerical solution of the difference scheme 

(5)-(7) is unconditionally stable.  

Numerical experiments 

In the following experiments, the initial function of problem (1)-(3) can be set in the 

following form [15]: /2( ,0) sec ( 4).u x h x=   

We take xL = 20, xR = 40, and T = 10. Since the exact solutions of the BBM eqs. (1)-

(3) is unknown, we set the numerical solutions on the mesh 1 / 160h = =  as the reference so-

lution. For comparison in this paper, the two-layers linear scheme (5)-(7) is named as Scheme 1, 

and the two-level non-linear scheme in [15] is named as Scheme 2, the three layer linear scheme 

in [16] as Scheme 3. For different values of τ and h, l∞ error at several different times are shown 

in tab. 1. Finally, the conserved quantity (4) of numerical solutions is shown in tab. 2.  

Table 1. The l∞ error comparison of the three schemes at several different times  

Table 2. Numerical simulations of the conservation invariant (4) 

It can be seen from the numerical experiments that Scheme 1 has the theoretical ac-

curacy of the second order in time and the fourth order in space, and is obviously better than 

the two-level non-linear Scheme 2 and the three-level linear Scheme 3. Table 2 also shows the 

reasonably simulations of the conserved quantity (4).  

Conclusion 

A novel numerical scheme for the initial-boundary value problem of BBM equation 

with a homogeneous boundary is considered. A two-level linearized difference scheme is pro-

 τ = 0.4, h = 0.2 τ = 0.1, h = 0.1 τ = 0.025, h = 0.05 

 Scheme1 Scheme 2  Scheme 3 Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 

t = 2 2.2303·10–3 2.5132·10–3 2.7454·10–3 1.3951·10–4 1.5724·10–4 1.9144·10–4 8.2092·10–6 9.2532·10–6 1.1577·10–5 

t = 4 2.7610·10–3 2.9814·10–3 3.6096·10–3 1.7223·10–4 1.8561·10–4 2.4630·10–4 1.0132·10–5 1.0919·10–5 1.4812·10–5 

t = 6 2.7384·10–3 2.8743·10–3 3.7131·10–3 1.7042·10–4 1.7857·10–4 2.5183·10–4 1.0025·10–5 1.0506·10–5 1.5127·10–5 

t = 8 2.5592·10–3 2.6313·10–3 3.5723·10–3 1.5900·10–4 1.6345·10–4 2.4195·10–4 9.3522·10–6 9.6135·10–6 1.4531·10–5 

t = 10 2.3464·10–3 2.6313·10–3 3.3579·10–3 1.4566·10–4 1.4758·10–4 2.2774·10–4 8.5670·10–6 8.6801·10–6 1.3683·10–5 

 τ = 0.4, h = 0.2 τ = 0.1, h = 0.1 τ = 0.025, h = 0.05 

t = 2 7.999477502867281 7.999450190471835 7.999443302979656 

t = 4 7.999468843609141 7.999449092562881 7.999442201778074 

t = 6 7.999415162464388 7.999440961334592 7.999434116090026 

t = 8 7.999135825831214 7.999390383543243 7.999383814257381 

t = 10 7.999135825831214 7.999124287260258 7.999118965471003 
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posed with theoretical accuracy 2 4( ).O h +  Also, the conservation property of the problem is 

verified. Therefore, the two-level linear difference scheme proposed in this paper for the ini-

tial boundary value problem (1)-(3) is more effective. 
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Nomenclature 

t – time, [s] u – velocity, [ms–1] x – co-ordinates, [m] 
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