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The electrically conducting, incompressible and isothermal Newtonian fluid-flow 
in unsteady tank drainage is studied. The perturbation method is employed to ob-
tain solution and results have been compared with those of obtained by adomian 
decomposition method result. The results of adomian decomposition method are 
same as those of perturbation method. The Newtonian fluid solution is worked out 
with substitution ε = 0. Explicit expressions on behalf of velocity field, flow rate, 
relationship however will the times vary with length, average velocity and time 
needed for complete drainage are acquired. Impacts of different developing pa-
rameters on velocity profile, vz, flow rate and depth of the tank, H(t), are exhibited 
graphically. 
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Introduction 

Tank drainage flow under gravitational forces is old and simple yet intricated problem. 

The flows of draining fluid under force of gravity have great importance, as it frequently 

appears in various industries. Examples include processing of fluids, immiscible gas 

applications, dams, waste water management and draining condensate into storage. The tank 

might be depleted by a simple opening or might be drained throughout a complete channeling 

framework of horizontanl and/or vertical pipes. The tank has usually a cylindrical form with 

vertical wall, however base may flat cone shaped hemispherical or other shape is likely. 

Considering various facts including, precise time and height measurement, friction losses and 

other end effects, the governing equations model the flow accurately [1, 2]. Some outstanding 
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reviews concerning series solutions and exact solutions have been given by Khaskheli et al. [3]. 

The Newtonian, power law and couple stress fluids have been used for tank drainage flow by 

[4-7] to study and analyze the problem for exact solution.  

This research studies Newtonian MHD fluid-flow in a rectangular tank drainage setup. 

The governing equations are solved analytically, by perturbation using parameter ε = 0. The 

obtained solution leads to analysis of the various profiles and parameters, including fluid ve-

locity, fluid-flow rate, instantaneous relation between fluid in tank and time. To best of 

knowledge, literature does not report analytical solution of the problem.  

Governing equations of fluid-flow 

Setting aside the thermal effects, the incompressible viscous fluid-flow is modeled by 

the equations 0,V   and  D /D ( ). V t p b T J B        The symbol ρ represents 

density, considered constant thoroughly, V be the velocity, p stand for the dynamic pressure, b 
represents the body force, T is the extra stress tensor, and D/Dt defines material derivatives. As 

a result Lorentz force per unit volume be 2
0[0,0, ],zJ B B v    where σ is the electrical con-

ductivity, 0[0,0, ]B B  be the uniform magnetic field, here B0 be the magnetic field, as applied, 

and J be the current density J, which is  ,J E V B    and 0 .B J   

Here E is the electric field which is not considered in this study and μ0 be the magnetic 

permeability. The extra stress tensor defining a Newtonain fluid is specified by 1, T A here 

A1 be the first Rivlin-Ericksen tensor identified as 1 ( ) .TA V V    

 Tank drainage flow 

A cylindrical tank, as depicted in fig. 1 and is described in [3], is considered with 

radius, RT, and diameter, D. The tank contains an isothermal, incompressible electrically con-

ducting Newtonian fluid till height, H0. The radius and length of the pipe, causing drainage 

under gravity, is R and L. Height of the fluid in tank is function of time and is denoted by H(t). 
Flow is driven by pressure of the fluid and gravity. The solution is aimed at determining the 

shear stress on the walls of pipe and flow rate.  

The governing equation describing flow is:  

 
2
01 g ( )

( ) 1z
z

Bv H t
r v r

r r r L

 

 

    
          

 (1) 

The related boundary conditions are:  

 at 0, 0, free space boundary condition
d

zv
r

r


   (2) 

 at , 0 no-slip boundary conditionzr R v   (3) 

For details of derivation of equations, reader is referred to [1, 3]. 

Adomian decomposition method 

First, we use adomian decomposition method (ADM) to solve above second order 

differential equation. Let us define: 

1
r L

r r r

  
 

  
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such that L is invertible operator and is given as:  

1 1* (*)d( d)L r r r r   
    

In operator form, can be written:
 
 

 
2
0 g ( )

( ) 1z z

B H t
Lv v r

L

 

 

 
   

   (4) 

Applying L–1on both sides, we get: 

 
2

2 10g ( )
1 ln

4
z z

BH t
v r A r B L v
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 

 
      

 
 (5) 

By Adomian substitution: 

 
0

( )z n

n

v r v




  (6) 

Using in eq. (6) in (5), we get the following solution: 

 
2

0

g ( )
1 ln

4

H t
v r A r B

L





 
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 
 (7) 

Similarly, next term we can find by utilizing recursive relation: 

 
2

10
1, 1i i

B
v L v i






   (8) 

Using solution (6) in the boundary conditions (2) and (3), we get: 

 0 1 2 3at , ... 0r R v v v v       (9) 

 0 31 2at 0 ... 0
d d d d

v vv v
r

r r r r

  
       (10) 

Substitute the solution of velocity obtained by solving zeroth order from eq. (7), first 

order for selecting i = 1 in (8) and for second order take i = 2 with related conditions in eq. (6), 

the considerable calculations is: 

 
2

2 2 2 2 4 40g ( )
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v R r r R r R
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(11) 

Solution by perturbation method 

Consider 2
0( )/B   , where ε is supposed as a small parameter. The velocity profile 

( , ),zv r   in terms of power, can be specified:  

 2
0 1 2( , ) ( ) ( ) ( ) ....zv r v r v r v r       (12) 
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By utilizing eq. (12) into eqs. (1) to (3) and collecting the coefficients of similar 

powers of ε, we end up with 0th, 1st, and 2nd order problem, given below, along with boundary 

conditions: 

 
0 0d1 d g ( )

: 1
d d

v H t
r

r r r L






   
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  
 (13) 

with related boundary conditions, 0(d d ) 0 t 0,/ av r r   and 0 0 at :v r R    

 
1 1

0

d1 d
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d d
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r v

r r r
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(14) 

with conditions, 1(d d ) 0 t 0,/ av r r   and 1 0 at ,v r R 
 
and: 
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1

d1 d
: 0

d d

v
r v

r r r
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 
  

 
 

(15) 

with associated conditions, 2(d ) 0/ t 0,d arv r   and 2 0 at .v r R    

Substitute the solution of velocity obtained by solving 0th order, 1st order, 2nd order 

with related conditions in eq. (12), the considerable calculations is: 

 
2 2 2 2 4 4g ( )
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 (16) 

It is called attention to that on the off chance that the perturbation parameter is set to 

be ε = 0in eq. (16), we recuperate the answer for the similar problem with Newtonian fluid, 

which is presented in [3].  

Flow rate, average velocity, and  

time-depth relation 

The flow rate expression, per unit width is denoted by Q, average velocity,  , and 

mass balance over the entire tank formula is given in [1, 5, 7] by using these formulas in after 

using (26), we obtain: 
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 (20) 

Remark: Time of efflux (Time required for complete drainage) is obtained by taking 

H(t) = 0 in eq. (19). Taking ε = 0 in eq. (20), the solution is worked out [1]. 

Discussion on results 

In this study, unsteady flow an isothermal, incompressible and electrically conducting 

Newtonian fluid is considered under gravity and hydrostatic pressure, in a tank drainage setup. 

The various influencing parameters have been studied, which affect the characteristics of fluid-

flow, i.e. velocity profile, zv , flow rate, Q, and depth, H(t). Figures 1-6 represent the velocity 

profile for various parameter settings. The relationship between effects of the electrical con-

ductivity, σ, and velocity, applied magnetic field, B0, and velocity, density, ρ, and velocity, 

velocity and dynamic viscosity, η, and velocity are depicted in figs. 1-4, respectively. The flow 

rate against various depths, H(t), is presented in fig. 5, which shows higher flow rate near walls 

of the pipe. Figure 6 explains the fact that larger the radius of the tank, the depth will increase. 

From here, it can be concluded that larger the radius of the tank it will take more time to empty 

the tank completely.  

  
Figure 1. Velocity profile for different σ,  

when η = 11.5 poise, ρ = 0.78 g/cm3, R = 5 cm,  
L = 10 cm, B0 = 1, and H(t) = 20 cm 

Figure 2. Effect of B0 on velocity profile,  

when η = 11.5 poise, ρ = 0.78 g/cm3,  
R = 5 cm, L = 10 cm, σ = 0.02, and  
H(t) = 20 cm  

  

Figure 3. Velocity profile for different values  
of ρ, when η = 11.5 poise, R = 5 cm, L = 10 cm,   

H(t) = 20 cm,  σ = 0.01, and B0 = 0.25  

Figure 4. Velocity profile η, when  
ρ = 0.78 g/cm3, R = 5 cm, L = 10 cm,  

H(t) = 20 cm, σ = 0.1, and B0 = 0.25 
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Figure 5. Flow rate against H(t), when η = 31.5 
poise, ρ = 0.78 g/cm3, L = 10 cm, σ = 0.1, and  

B0 = 0.25 

Figure 6. Effect of RT on depth w.r.t “R”, 
when η = 0.6 poise, t = 1, H0 = 20 cm,  

L = 10 cm, ρ = 1.38 g/cm3
, σ = 0.1,  

and B0 = 0.25  

The results summarize that the electrical conductivity, σ, applied magnetic field, B0, 

depth, H(t), pipe radius, R, density, ρ, are directly proportional to velocity, where length of the 

pipe, L, and dynamic viscosity, η, are inversely proportional to velocity. An increase in earlier 

parameters leads to increase in velocity, whereas decrease in later parameters decreases 

veclocity. 

Concluding remarks 

The exact solution, aiming at analyzing velocity under gravity and hydrostatic force, 

was obtained from governing equations. These equations are used to model unsteady, incom-

pressible, isothermal fluid draining through pipe attached in tank drainage under force of grav-

ity and pressure. Here it is noted that for the perturbation parameter ε = 0, solution of the prob-

lem reduces to the Newtonian solution without MHD [4]. In equation (19), the depth of the 

fluid at various time instants is expressed. This is inevitable to mention that lower the dynamic 

viscosity, higher the velocity of the fluid, and fluid will take less time in complete drainage as 

compare to thicker. 
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