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This research article discusses the 3-D flow of magnetized Prandtl nanoliquid by 
convectively heated surface utilizing homogeneous-heterogeneous reactions. An 
extendable surface produces the flow. Thermophoresis and random development 
are investigated. Thermal transport for the convective method is accounted. The 
Prandtl material is an electrical conducting via applying a magnetic field. 
Appropriate non-dimensional factors correspond to the non-linear differential 
equations. Acquired non-linear differential frameworks are comprehended via the 
optimal homotopic procedure. Physical amounts like surface drag force and rate 
of the heat transfer are investigated through sketches. It is seen that the impacts of 
Biot and Hartman numbers on the concentration and the temperature are very 
comparative. Both the concentration and the temperature are improved for 
growing estimations of Biot and Hartman numbers. 
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Introduction 

The nanofluid phenomenon is an interesting topic for scientists and researchers be-

cause of its many practical significance in modern nanotechnology and manufacturing. 

Nanofluids play a significant role in thermal energy tools as an excellent unusual for improving 

the performance of mass and heat transport apparatus and reducing the mass of the device, and 

generating electricity. To progress the effectiveness of flat plate solar collectors, scholars per-

formed observational and methodological research projects on smooth plate solar thermal uti-

lizing nanofluids with specific binary components (nanofluids) as operating fluids. Because the 

water is a good reference point for convection and is also an excellent medium for collecting 

and storing solar energy during the sunrise, thus water is a suitable medium for heating activities 

and a significant source for solar energy use. Nanofluid mechanism accomplished various wide 

range applications in modern nanotechnologies, chemical and mechanical industries like paper 

cooling, crystal growing, vitality, hardware, and microelectronics. Nanoparticles sizing from 1 

nm to 100 nm have particular chemical, technological and mechanical characteristics and thus 

offer unique opportunities to tackle oil production challenges in a novel way. Compared to 

several other functional nanofluids, magnetic nanoparticles (MNP) have a various wide range 
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of exclusive magnetic characteristics which give them a significant advantage in underground 

transport manipulation. Utilizes of MNP for pharmaceutical and biomedical applications is gen-

erally classified into two types: implementation in vitro and application in vivo. The vitro in-

volves separation and filtration, magneto faction immunology, and magnetic solid-phase pro-

cessing, and in vivo implementations include chiefly medical treatments for example, hyper-

thermia treatment and targeted drug delivery and diagnoses like functional magnetic resonance 

and mass spectroscopy tomography. Nanofluids were firstly termed by Choi [1]. Then 

Buongiorno [2] explored relationship to examine the features of Brownian movement and ther-

mophoresis. Few investigations on nanofluids can be represented by examinations [3-15]. 

Chemical responses are masterminded into heterogeneous-homogeneous responses 

related to different artificially reacting-structure such as consuming, bio-chemical and catalysis 

systems. Such reactions react especially in non-attendance or closeness of impulse. In the ho-

mogeneous reaction, the driving force works in a similar stage however if there ought to emerge, 

an event of the heterogeneous-reaction catalyst works in the numerous stage. Usages of mixture 

responses consolidate sustenance assimilation in body, polymer age, impact of fireworks, col-

lecting of pottery creation, hydrometallurgical gadgets, biochemical structures, refining process 

and fog course of action. Viscous flow subject to heterogeneous-homogeneous responses is 

accounted by Merkin [16]. Heterogeneous-homogeneous responses subject to equal diffusivi-

ties are inspected by Chaudary and Merkin [17]. Kameswaran et al. [18] discussed nanofluid 

streams through vulnerable surfaces subject to heterogeneous-homogeneous responses. Heter-

ogeneous-homogeneous responses in MHD streams provoked by twisted expanding plate are 

represented by Imtiaz et al. [19]. Heterogeneous-homogeneous responses in the magnetized 

Fe3O4 nanoliquid stream with the radiative surface is analyzed by Sajid et al. [20]. Modified 

Fick’s and Fourier’s laws for the 3-D stream of visco-elastic liquid were explored by Hayat et 
al. [21]. Khan et al. [22] provided viscous liquid Darcy Forchheimer stream with heterogene-

ous-homogeneous responses. 

The prime reason for the present subject is to 

outline heterogeneous-homogeneous responses in 

the magnetized 3-D Prandtl liquid flow [23-26] 

within sight of the nanomaterials. Mass and thermal 

exchange properties are depicted via arbitrary 

motion and thermophoretic diffusion. Thermally 

convection [27, 28] and flux of zero nanoparticles 

[29, 30] at the boundary are utilized. Acquired non-

linear differential frameworks are computed via 

OHAM [31-37]. The impacts of different physical 

factors are examined. Moreover, the surface drags 

and heat transport rate is investigated via sketches, 

fig. 1. 

Model development 

The steady, 3-D flow of magnetized Prandtl nanoliquid by extendable linear surface 

with heterogeneous-homogeneous responses is presented. Random movement and thermo-

phoretic features are accounted. The surface is extended along x- and y-axes at z = 0  subject to 

velocities Uw and Vw. The homogeneous-response for the cubic-catalysis is [16, 21]: 

 
2

c3 , rateA B B k ab    (1) 

 

Figure 1. The sketch of the model 
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At the catalyst-surface, the heterogeneous-response is [16, 21]: 

 s, rateA B k a   (2) 

Here kc, ks, and A, B are the constants and chemical-species. The flow equations are: 
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where u, v, and w are velocities in x-, y-, and z-axes, respectively, while s, DT, and m denote 

electrical conductivity, thermophoretic diffusivity, and dynamic viscosity, respectively, A* and 

c* the material constants, n (= m/rf) – the kinematic viscosity, a*= k/(rc)f, k, and C – the thermal 

diffusion, thermal conductivity, and concentration of the nanoparticles, respectively (rc)f – the 

heat capacity of liquid, rf – the density, and T¥, C¥ – the ambient temperature and 

concentrations. Considering:  
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Continuity relation (3) is confirmed while eqs. (4)-(11) yield: 
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where b1 and b2 stand for Prandtl fluid numbers, Ha – the Hartman parameter, Pr  – the Prandtl 

number, a – the ratio factor, g – the Biot factor, Sc – the Schmidt factor, Nb – the Brownian 

development factor, Nt – the thermophoresis factor, k1 – the the strength of homogeneous 

reaction, Scb – the Schmidt number, d – the the ratio of mass diffusion coefficients, and k2 – the 

the strength of the heterogeneous reaction. These pertinent parameters are characterized by: 
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Assuming that DA = DB we have d = 1 and thus: 

 ( ) ( ) 1r h    (22) 

Now eqs. (17) and (18) yield: 
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with the boundary conditions: 
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The physical quantities are given by: 

1/2 3 1/2 3 1/2
f 1 2 g 1 2Re [ (0) (0) ], Re [ g (0) g (0) ], Re Nu 0( )x y x xC f f C               (25) 

where Rex = Uwx/n and Rey = Vwy/n stands for local Reynolds numbers. The presented results 

are converted to Newtonian fluid flow case when 1 1   and 2 0.   

The OHAM solutions 

The manuscript, linear operators, and initial guesses for the homotopic solutions are: 
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The aforementioned linear operators satisfy: 
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in which ****
jH (j = 1-12) indicate constants. The 0th and mth orders deformations are defined 

easily via the mentioned operators by BVPH 2.0 . Figure 2  represents the sum of the square 

residual-error. Table 1  displays that averaged squared residual error presents a decaying 

situation with the higher-order deformations. 

Table 1. Numerical values of the errors using the optimal data of the auxiliary variables 

 

m  
f

m  
g
m  m

  m
  

r
m  

2 8.14 × 10⁻⁴ 2.91 × 10⁻⁵ 4.30 × 10⁻⁵ 5.34 × 10⁻⁵ 2.16 × 10⁻⁴ 

6 7.48 × 10⁻⁵ 1.62 × 10⁻⁶ 5.93 × 10⁻⁶ 1.65 × 10⁻⁵ 1.25 × 10⁻⁴ 

10 1.89 × 10⁻⁵ 2.23 × 10⁻⁷ 2.51 × 10⁻⁶ 9.18 × 10⁻⁶ 8.50 × 10⁻⁵ 

16 4.47 × 10⁻⁶ 2.97 × 10⁻⁸ 1.09 × 10⁻⁶ 5.01 × 10⁻⁶ 6.11 × 10⁻⁵ 

20 2.12 × 10⁻⁶ 1.25 × 10⁻⁸ 7.19 × 10⁻⁷ 3.69 × 10⁻⁶ 4.85 × 10⁻⁵ 

24 1.12 × 10⁻⁶ 6.43 × 10⁻⁹ 5.05 × 10⁻⁷ 2.85 × 10⁻⁶ 4.27 × 10⁻⁵ 

30 5.02 × 10⁻⁷ 2.92 × 10⁻⁹ 3.23 × 10⁻⁷ 2.07 × 10⁻⁶ 3.25 × 10⁻⁵ 
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Graphical findings and discussion 

This portion depicts the features of several 

emerging flow variables such as Prandtl liquid 

parameters β1 and β2, Hartman number, 

heterogeneous reaction parameter, k2, ratio 

number, α, Biot parameter, g, Schmidt number, 

Scb (for heterogeneous-homogeneous reactions), 

Prandtl factor, Schmidt parameter, homoge-

neous-reaction parameter k1, Brownian factor, 

Nb, and thermophoresis factor, Nt, on the 

temperature, q(z), concentration, ϕ(z), and 

concentration rate, r(z). Figures 3  and 4  are 

displayed to explore temperature, q(z), for different data of β1 and β2. Here expansion in the β1 

and β2 prompts a decline in temperature. Figure 5 shows the varieties of Hartman number on 

temperature profile, q(z). Lorentz power emerges in Hartman number that opposes the smooth 

movement in this manner temperature field, q(z), upgrades. Figure 6 exhibits that a change in 

degree number, α, prompts a helpless temperature, q(z). The effect of the Biot factor, g, on the 

q(z) is delineated in fig. 7. Increment in the   produces ground-breaking convection that shows 

augmentation in the q(z). Figure 8 displays that q(z) reduces for more noteworthy estimations 

of Prandtl number. As more prominent Prandtl number relates to bringing down warm 

diffusivity which causes a decline in temperature. Figure 9 is developed to consider impact of 

Nt on temperature q(z). An expansion in Nt keeps an eye on more temperature. Such boundary 

is happened because of nanomaterials. The presence of the nanomaterials enhanced the warm 

conductivity. Nanofluid warm conductivity is expanding the capacity of q(z). That is the reason 

upgrade in q(z) is watched for more prominent data of Nt. Figures 10 and 11 clarify that 

concentration is littler for the more prominent estimations of β1 and β2 (material boundaries). 

Figures 12 and 13 are sketched to investigate variation in the ϕ(z) for the bigger Hartman 

number and α. We saw that reverse impacts happen for both Hartman number and α on 

concentration profiles. Figure 14 displays outcomes of Scmidt number on the ϕ(z). The Schmidt 

factor identifies with the mass dissemination of the framework. As the Scmidt number has been 

 
Figure 3. Curves of β₁ contrasted with θ(ζ);  
β1 = 0.5, Ha = Nt = 0.1, α = γ = Nb = 0.3,  

Sc = Pr = 1.0 

Figure 4. Curves of β₂ contrasted with θ(ζ);  
β1 = 0.5, Ha = Nt = 0.1, α = γ = Nb = 0.3,  

Sc = Pr = 1.0 

 

Figure 2. Sketch of total residual – error 
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Figure 5. Curves of Hartman number contrasted 
with θ(ζ); β1 = β2 = 0.5, Nt = 0.1, α = γ = Nb = 0.3,  
Sc = Pr = 1.0 

Figure 6. Curves of α contrasted with θ(ζ);  
β1 = β2 = 0.5, Ha = Nt = 0.1, γ = Nb = 0.3,  
Sc = Pr = 1.0 

 

 
Figure 7. Curves of γ contrasted with θ(ζ);  

β1 = β2 = 0.5, Ha = Nt = 0.1, α = Nb = 0.3,  
Sc = Pr = 1.0 

Figure 8. Curves of Prandtl number 

contrasted with θ(ζ); β1 = β2 = 0.5,  
Ha = Nt = 0.1, α = γ = Nb = 0.3, Sc = 1.0 

 
Figure 9. Curves of Nt contrasted with θ(ζ);  
β1 = β2 = 0.5, Ha = 0.1, α = γ = Nb = 0.3,  
Sc = Pr = 1.0 

Figure 10. Curves of β₁ contrasted with ϕ(ζ);  
β2 = 0.5, Ha = Nt = 0.1, α = γ = Nb = 0.3,  
Sc = Pr = 1.0 
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Figure 11. Curves of β₂ contrasted with ϕ(ζ);  
β1 = 0.5, Ha = Nt = 0.1, α = γ = Nb = 0.3,  

Sc = Pr = 1.0 

Figure 12. Curves of Hartman number 
contrasted with ϕ(ζ); β1 = β2 = 0.5, Nt = 0.1,  

α = γ = Nb = 0.3, Sc = Pr = 1.0 

 
Figure 13. Curves of α contrasted with ϕ(ζ);  
β1 = β2 = 0.5, Ha = Nt = 0.1, γ = Nb = 0.3,  

Sc = Pr = 1.0 

Figure 14. Curves of Schmidt number 
contrasted with ϕ(ζ); β1 = β2 = 0.5, Ha = Nt = 

0.1, α = γ = Nb = 0.3, Pr = 1.0 

expanded concentration dispersion diminishes because of which concentration shows a 

diminishing pattern. Brownian boundary, Nb, when expanded, causes an adjustment in 

Brownian movement, which decreases the circulation of concentration as delineated via fig. 15. 

Expanding Nt leads increment in warm conduction of framework which gives in increment of 

concentration as observed via fig. 16. Figure 17 is conspired for the consequence of proportion 

boundary α on concentration rate, r(z). Here, r(z) is more via α. Figure 18 displays that bigger 

Scb compare to more r(z). Figure 19 depicts that bigger homogeneous-response boundary k1 

shows the decay in r(z). Figure 20 displays that increasing estimations of heterogeneous-

response boundary k2 comprises more r(z). Figure 21  displays the behavior of Hartman number 

and β1 on 
1/2

f Re .xC  Here 
1/2

f RexC  enhances for Hartman number. Figure 22  depicts the impacts 

of α and β1 on 
1/2

f Re .xC  Here 
1/2

f RexC  shows expanding conduct for the α and β1. Figure 23  

displays the features of Hartman number and β1 on the 1/2
gRe .xC  Bigger Hartman number 

produces expanding function for 1/2
gRe .xC  Figure 24 reveals the influences of α and β1 on 

1/2
gRe .yC  From this figure it has been obtained that 1/2

gReyC  is a high bulk of the α. Effects of 

Nb and Nt on the 
1/2Nu Rex x  are revealed through fig. 25 . Here 

1/2Nu Rex x  decays for Nt while 

the constant trend is watched for the Nb. 



Alghamdi, M
 

 

 
Figure 15. Curves of Nb contrasted with ϕ(ζ);  
β1 = β2 = 0.5, Ha = Nt = 0.1, α = γ = 0.3,  
Sc = Pr = 1.0 

Figure 16. Curves of Nt contrasted with ϕ(ζ);  
β1 = β2 = 0.5, Ha = 0.1, α = γ = Nb = 0.3,  
Sc = Pr = 1.0 

 
Figure 17. Curves of α contrasted with r(ζ);  
λ = Nt = 0.2, Fr = 0.1, k1 = γ = 0.3, Sc = Pr = 1.0, 
Nb = Scb = k2 = 0.5 

Figure 18. Curves of Schmidt number contrasted 
with r(ζ); α = λ = Nt = 0.2, Fr = 0.1, k1 = γ = 0.3,  
Pr = 1.0, Nb = Scb = k2 = 0.5 

 
Figure 19. Curves of k₁ contrasted with r(ζ);  
α = λ = Nt = 0.2, Fr = 0.1, γ = 0.3, Sc = Pr = 1.0,  

Nb = Scb = k2 = 0.5 

Figure 20. Curves of k₂ contrasted with r(ζ);  
β1 = β2 = 0.5, Ha = 0.1, α = γ = Nb = 0.3,  

Sc = Pr = 1.0 
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Figure 21. Curves of 

1/2
f RexC via Hartman number 

and β₁; β2 = 0.5, Nt = 0.1, α = γ = Nb = 0.3,  
Sc = Pr = 1.0 

Figure 22. Curves of 
1/2

f RexC via α and β₁;  
β2 = 0.5, Ha = Nt = 0.1, γ = Nb = 0.3,  
Sc = Pr = 1.0 

 

 
Figure 23. Curves of 

1/2
Reg xC  via 

Hartman number and β₁; β2 = 0.5,  

Nt = 0.1, α = γ = Nb = 0.3, Sc = Pr = 1.0 

Figure 24. Curves of 
1/2

Reg xC via α and β₁; 
β2 = 0.5, Ha  = Nt = 0.1, γ = Nb = 0.3,  

Sc = Pr = 1.0 

  

Conclusions 

Here the 3-D convective stream of 

magnetized Prandtl nanomaterial due to ex-

tendable sheet subject to heterogeneous-

homogeneous responses is addressed. Random 

movement and thermophoretic features are 

accounted. Appropriate non-dimensional 

factors correspond to the non-linear ODE. 

Acquired non-linear differential frameworks 

are comprehended via the optimal homotopic 

procedure. The temperature, θ(ζ), and the 

concentration, ( ),   of nanomaterial present 

decay for the bigger Prandtl parameters, β₁ and 

β2. An expansion in Hartman number depicts 

 

Figure 25. Curves of 
1/2

x x
Nu Re via Nb and Nt;  

β1 = β2 = 0.5, Ha  = 0.1, α = γ = 0.3, Sc = Pr = 1.0 
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more grounded θ(ζ) and ϕ(ζ). Bigger ratio parameter, ,  delineates lower nanoparticles 

concentration, ϕ(ζ), and the temperature, θ(ζ), fields. Bigger, g displays more grounded θ(ζ). A 

similar trend is watched for different estimations of the Nt on the concentration ϕ(ζ) and the 

temperature θ(ζ) fields [38-43]. For bigger data of Prandtl number, temperature θ(ζ) decays. 

Concentration rate r(ζ) is enhanced via Schmidt number Scb. An enhancement in k1 leads to 

weaker concentration rate r(ζ) while the opposite trend is watched for k2. 
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