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In this study, a 2-D lattice Boltzmann method was used to numerically study the 
interaction between two light particles rising freely in a channel. The influence of 
the Reynolds number and the density difference between the particles as they rose 
was studied from the aspects of particle velocity, motion trajectory and motion 
pattern. The results show that a change of Reynolds number changed the relative 
position and distance between the particles, and a change in density changed the 
inertial force of the particles, which affected the interaction between them. Two 
movement patterns have been revealed: relatively static and a periodic movement 
pattern. The influence of differing density on the movement period of the particles 
was also studied. 
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Introduction 

Two-phase flow is widely present in nature and engineering equipment, such as a 

dusty atmosphere and clouds, sandy water flow, blood vessel flow, and air bubbles in the oceans 

[1]. In two-phase flow, the hydrodynamic interactions between particles are very important for 

studying the flow characteristics and particle movement patterns. 

For particle-fluid interactions of a single particle that settles or rises in a fluid, the 

effect of particle size and density on particle sedimentation has been revealed, and different 

motion patterns of particles during sedimentation have also been discovered [2, 3]. The free rise 

of spherical particles with a density less than that of the fluid is considered to obey the law of 

free sedimentation, because the same force is applied to the particles but in the opposite direc-

tion. However experiments and simulations have found that compared with falling spheres, 

rising spheres under certain conditions exhibit different behaviors [3-5]. 

For particle-particle interactions in the particle-fluid system of two or more particles, 

the drafting, kissing, and tumbling [6] particle pattern mode has been revealed through experi-

ments by Lomholt et al. [7] and 2-D, by Feng and Michaelides [8], and 3-D simulations, 

Glowinski et al. [9]. Based on the different responses of light and heavy particles to turbulent 

fluctuations, it is reliable to use density and size as indices to quantify the degree of aggregation 

and separation [10]. 

From the mentioned literature survey, it is clear that particle-fluid and particle–parti-

cle interactions are of great significance to the study of two-phase flow. Most of the literature 
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only focuses on the interactions of two heavy particles when they settle, however, it is worth 

noting that few studies discuss the interaction of two rising particles in different configurations. 

Therefore, the aim of our work is to demonstrate a deeper understanding of the interactions 

between two unequal particles using the lattice Boltzmann method (LBM). 

Lattice Boltzmann method 

This work used a single-relaxation-time LBM [11] to solve the motion of the fluid. 

The discrete lattice Boltzmann equation is expressed: 

 (0)1
( , ) ( , ) [ ( , ) ( , )]i i i i if e t t t f t f t f t


       x x x x  (1) 

where fi(x, t) is the distribution function for the microscopic velocity, ei, in the ith direction, 

fi
(0)(x, t) – the equilibrium distribution function, Δt – the time step of the simulation, and  

 – the relaxation time related to the fluid viscosity, .

 The density and velocity of fluid are computed through the follow formulations, 
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The D2Q9 lattice model was adopted in this work, for which the discrete velocity 

vectorsare given by, 
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The equilibrium distribution function fi
(0)(x,t) is chosen: 
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where c = Δx/Δt. Note that Δx is the lattice spacing and the weights are: w0 = 4/9, w1-4 = 1/9, 

and w5-8 = 1/36. 
For simplicity, the lattice spacing, Δx, and the time step, Δt, were both fixed at 1, 

which is common for lattice Boltzmann simulations. In addition, an interpolation-based bounce-

back scheme [12] was employed to treat the curved boundaries of the solid particles. To account 

for the lubrication effects between particles at small distances, a lubrication force model [13] 

was introduced. 

Problem description 

The purpose of this work is to study the interaction of two light particles in the fluid 

during their freely rising period, as shown in fig. 1, where two round particles with the same 

diameter, d, but different densities ( and 2) are released freely, and the 2-D channel is filled 

with a fluid with density,  and kinematic, . In the simulation, unless otherwise specified, the 

parameters are fixed as follows: d = 30, L = 5d, H = 25d (corresponding to a 300 × 1500 lattice 

unit calculation grid), the initial distance between particles is L1 = 2d, and H1 = 10d, and H2 = 
15d. Since > 2 > 1, the particles will move upward (in the opposite direction of gravity) 
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due to having a lower density than that of the fluid. It is 

worth noting that the mentioned parameters are all 

based on lattice units that are common in lattice Boltz-

mann simulations. To simulate an infinite channel, a 

moving computational domain was used in this work. 

Owing to the unpredictability of the final velocity 

of the particle, the velocity scale is set: 

 1
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where g is gravitational acceleration. The time scale is 

fixed as T0 = d/U0. The length scale is the diameter of 

the particle, d. Some dimensionless parameters are con-

figured as: density difference of the particles = ( – 

)/, Reynolds number Re = U0d/, position of the 

light particle X1' = X1/d and Y1' = Y1/d, position of the 

heavy particle X2' = X2/d and Y2' = Y2/d, average rising velocity of the heavy particle Vy2' = 

Vy2/U0. 

Numerical results 

A numerical study of the interaction of two unequal particles in a 2-D channel during 

the rising process was carried out. The Reynolds number range was 5-50 (5 ≤ Re ≤ 50) and the 

density difference between the particles ranged from 0.01-0.07 (0.01 ≤ ≤ 0.07). When  

changed, the situation was different, fig. 2 shows the average rising velocity (Vy2') of the rela-

tively heavy particle (referred to as heavy parti-

cle) at different  for a specific Reynolds num-

ber. Note that Vy2' suddenly increased between 

= 0.03 and = 0.04 at Re = 5, which is differ-

ent from the other results. The reason for this 

mutation is that the pattern of the particle’s 

movement had changed. When ≤ 0.03, the 

heavy particle made circular arc-shaped periodic 

motions to the right of the light particle, fig. 3(a). 

The light particle was affected by the heavy par-

ticle, and exhibited horizontal oscillating motion 

(note that simultaneously, both particles were 

rising). The periodic motion of the heavy particle 

can be represented by its displacement in the 

horizontal direction, fig. 3(b). However, when 

≥ 0.03, this periodic motion disappeared and 

was replaced by a stable pattern, which was 

characterized by two particles in the center of the 

channel, and a rising pattern where the heavy 

particle is on the bottom and the light particle is on the top, as shown in fig. 3(c). This is pre-

cisely because the center of the channel receives the least wall effect, which explains the sudden 

rise in Vy1' at Re = 5. 

 

Figure 1. Schematic diagram of the 
particle rise mode 

 

Figure 2. Average rising velocity of the heavy 
particle, Vy2', under different parameters; the 
velocity marked by the dotted box is the 

velocity before the particles rose separately 
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Figure 3. Movement pattern of the particles and the displacement of the heavy particle in  
the X-direction; (a) = 0.01, Re = 5 and (b) = 0.04, Re = 5 

When Reynolds number is relatively medium (Re = 10, 15, 20), as presented in fig. 

2, there is an increase correlation between Vy2' and Reynolds number, especially when  

Re = 10. The results show that the motion pattern here is similar to that in fig. 3(a), both of 

which are the periodic arc motion of the heavy particle relative to the light particle. To better 

understand the impact of  and Reynolds number on this pattern, the phase diagrams con-

structed with X1' and X2' are presented in fig. 4(a). For a fixed value of Reynolds number, as 

the value of  increases, the size of the limit cycles increases significantly, fig. 4(a), which 

also affects the period of particle motion. Note that a single cycle is observed in the limit 

cycles of = 0.01 and 0.02, and double cycles are observed in the limit cycles of other  

 (= 0.03-0.06). To explain this, the limit cycles constructed by X2' and Y2' are shown in 

fig. 4(b). The difference is that there is a oscillating path on the left of the limit cycles, and 

the wake effect is the primary cause of the difference. When the heavy particle is in the wake 

region of the light particle, the velocity of the heavy particles increases suddenly owing to the 

smaller resistance, which explains the sudden increase in f between = 0.01 and = 0.02. 

When ≥ 0.02, f decreases monotonously with an increase in  because the particles take a 

longer time to complete the larger limit cycle. 
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Figure 4. Limit cycles as a function of  for Re = 10 constructed by (a) X1' and X2' and (b) X2' and Y2'; 
the figure also presents the frequency of particles oscillations f (f = T0/T ', where T ' is the period of 

particles oscillations)   

It is worth noting that, when  is specified (specifically  = 0.01, 0.02, and 0.03), an 

abnormal phenomenon appears with the change in Reynolds number. When Reynolds number 

increases (Re ≥ 20), the heavy particle no longer continues in a circular arc periodic motion, 

fig. 3(a), but is relatively stable at the lower right of the light particle. Figure 5 shows the posi-

tion and distance information of the particles when  = 0.01. As presented in fig. 5(a), with the 

change in Reynolds number, the relative position between particles also constantly changes 

(note that the position of Re = 5-15 is the critical position before the particles start to move 

periodically). To better understand this phenomenon, the distance information between parti-

cles (including the center, horizontal and vertical distances) is given in fig. 5(b). According to 

fig. 5(b), the distance between the centers of the two particles increases with Re. The horizontal 

distance decreases first, then increases with the increase in Re and the vertical distance increases 

 

Figure 5. Position information of the particles at different  Reynolds number for  = 0.01; (a) schematic 

diagram of particle location and (b) distance between particles 
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first, then decreases with the increase in Reynolds number. This explains why there is no peri-

odic movement of heavy particles as Reynolds number increases, when Reynolds number is 

greater than 15, the horizontal distance increase because of the enhancement of the flow field, 

resulting in a decrease in the interaction between the two particles, and a relatively stable motion 

pattern appears. 

Conclusion 

Here, a numerical study of rising particles in a 2-D channel was carried out. The re-

sults indicated that the change in Reynolds number and  will affect the particles' rising veloc-

ity, distance and movement pattern, and the influence is significant. Based on this influence, 

two different particle rising patterns were discovered: a relatively static and a periodic move-

ment pattern. In addition, according to different limit cycles, a periodic pattern was identified 

as periodic motion without wake and periodic motion with wake. 
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