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In this paper, we deal with the biharmonic heat equation with gradient non- 
-linearity. Under the suitable condition of the initial datum, we show that the global 
unique existence of the mild solution. The main technique in the paper is to use 
Banach’s fixed point theorem in combination with the Lp – Lq evaluation of 
biharmonic operator.  
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Introduction 

In this paper, we are interested to study the following biharmonic heat equation: 
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where n is the unit outward normal on ∂Ω. The higher order parabolic equation, namely the 

fourth order parabolic equations are used in many practical application models. They occur in 

the Cahn-Hillard equation, image segmentation, epithelial thin film growth, surface diffusion 

current equation [1-6]. We list some other applications of quadratic PDE. Issues related to 

airfoils, bridge panels, floor systems, and window glazing are being modeled as panels bearing 

different types of end supports modeled as a quaternary PDE [7]. If the biharmonic operator D2 

is replaced by a second order operator –D, the problem (1) is called problem is called classical 

heat equation [8-15]. The results of the classical thermal equations are plentiful and varied. To 

our best knowledge, there is limited previous study on the biharmonic heat equation with a such 

non-linearity. 
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We explain in detail why our study of the problem is interesting. 

– The appearance of quaternary operators and gradient terms is one of the main difficulties 

in research. 

– The solution space we consider is the Lp space, and the technique of studying global solu-

tions in this space is not simple. Our main idea is to use the lemma about Lp – Lq estimate 

of Ishige-Kawakami-Kobayashi [16]. Another remark is that if we just use the standard as 

in Weissler [17], then we get only local solution. However, we do not follow in his method. 

In the paper, we follow the technique of the paper of Atienza. This technique is also studied 

in the work of Tuan and Carabullo [14]. 

Preliminary solutions and definitions of mild roots contains two main results of the 

article. The first result is about the existence and unique local solution. The second result is 

related to the convergence of the solution when the parameter k approaches 0. 

Preliminaries 

For each number 0,s   we define the following space: 
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and the norm of ( ):sf H    
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By a simple calculation, we get the following ordinary differential equation with Rie-

mann-Liouville:  
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Multiplying bothsides to 
2

e
t

k


 and taking the integral from 0 to t, we get the definition 

of u in the below. 

Definition 1 The function w is called a mild solution of Problem (1) if it satisfies: 
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where 
2te   is biharmonic heat semigroup and defined by the following Fourier series: 
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First we state the following Lemma which will be useful in our main results (this 

lemma can be found in [18], Lemma 8, page 9).  
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Lemma 1 Let > 1,a   > 1b   such that 1,a b    > 0,  and (0, )t T . For > 0,  

the following limit holds:  
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Lemma 2 There exists a positive constant C depending on p, q such that for any 

1 p q   then:  
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Proof. The proof can be found in [15].  

Theorem 1 Let G be such:  
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where 1 q p   and 1/ 1/ < 3/ .q p N Let us assume that   satisfies: 
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where <3/4 /2(1/ –1/ )N q p  . Let us assume that ( )qf L   then Problem has a unique 

global existence in d, [(0, ]; ( )]p
mX T L   if m enough large. Here d satisfies:  
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In addition, the mild solution [0, ; ( )]r pz L T L   and:  
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for 1< <1/d.r   

 

Proof. Let us define the space d, [(0, ]; ( )]p
mX T L   denotes the weighted space of all 

functions n, here d, [(0, ]; ( )]p
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where > 0.p  Let us set the following function:  
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If z(t) = 0 then: 
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This implies that the following estimate hold: 
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Since /4(1/ –1/ ) 0d N q p  , we deduce that ,( ) [(0, ]; ( )]p
d mJz t X T L   if z(t) = 0.  
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Let us to treat the first term M1. By using Lemma 2, since 1 ,q p   we get:  
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This follows from (6):  
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We continute to provide the estimation of M2. By using Lemma 2, since 1 q p   and 

together with (6), we derive:  
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It is obvious to see that if 0 < t T    then we confirm:  
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This observations together with (12), (14), and (15) allows us to derive:  
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For our next purpose, we continue to show:  
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Indeed, by change variable = ,tz  we find:  
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We need the requirements of Lemma 2. Indeed, we easily to verify:  

 
1 1 1

1 > 0,  > 1
4 4

N
d

q p
 

 
       

 
 

 
1 1 1 1 1 1

> 1,  > 1
4 4 4 4

N N
d

q p q p


   
            

   
 (19) 



Can, N. H.
 

 

These conditions ensure that (16) holds. Therefore, if m enough large then we have:  
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So, the mapping J is a contraction mapping on the space d, [(0, ]; ( )]p
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d, [(0, ]; ( )].p
mu X T L   It is obvious to see that z is a mild solution of Problem (1). We have 

in view of (16) and (20):  

 
[(0, ]; ( )] [(0, ]; ( )]

d, d,

=p p
X T L X T L

m m

z Jz
 

  

 

1 1
d

4

( ) [(0, ]; ( )]
d,

1
( , )

2

N

q p
q p

L D X T L
m

C p q T f z


 
  

    (21) 

which allows us to conclude: 
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Therefore, multiply both sides of the above expression by 
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The proof of our Theorem is completed. 
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