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The purpose of this study is to investigate the behaviour of natural convection in a 
wavy trapezoidal enclosure that is filled with nanofluid. The left wavy wall has 
wavelength, l, and amplitude, A. The top and bottom walls are adiabatic while the 
side walls are set to constant temperature, and shear stress occurs at the top of the 
enclosure. The numerical approach used in this study in order to discretize the 
governing equations with its boundary conditions is the finite element method 
where the Galerkin technique is adopted. The solutions obtained are for various 
values of the Marangoni number, Rayleigh number, and solid particle volume 
fraction. The graphs of the streamlines, isotherms, local Nusselt, and average 
Nusselt numbers are then presented and discussed. 

Key words: Marangoni convection, heat transfer, wavy trapezoidal enclosure  

Introduction 

The Marangoni effect (also known as the Marangoni convection), which was named 
after the Italian physicist, Carlo Giuseppe Matteo Marangoni [1], is an effect where heat and 
mass move to an area with a higher surface tension within a liquid. Because of this, many 
studies have been conducted, as the phenomenon has significant effect in low-gravity 
hydrodynamics and small-scale systems [2] which improves heat transfer performance. Many 
investigations have been conducted on the Marangoni convection and heat transfer performance 
in a cavity. Zebib et al. [3] observed that boundary-layers formed in the cold stagnation area of 
a square cavity as Ra → ∞. This is further studied by Saleh and Hashim [2] where they 
examined a square cavity with shear stress taking place at the free surface on top of the 
enclosure. They discovered that when nanoparticles are added to the fluid, the flow rate at where 
the shear stress occurs is greater than the secondary cell. The heat transfer rate also improved 
with the presence of solid nanoparticles in the fluid. Singh and Bhargava [4] conducted a 
numerical study of Marangoni convection in a wavy enclosure and concluded that the heat 
transfer rate increases significantly with Rayleigh number and if the Prandtl number is less than 
1 . Chen et al. [5] conducted an investigation on the onset of double-diffusive Marangoni 
convection in a rectangle cavity and came to the conclusion that the Rayleigh number 
destabilises before stabilising fluid circulation. Various other geometries were also studied, 
including trapezoidal enclosures by Nasrin and Parvin [6] and Zaharuddin et al. [7]. Narsin and 
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Parvin [6] concluded that the heat transfer rate improves significantly when the Prandtl number 
is high and the length of the top width is short. Zaharuddin et al. [7], on the other hand, observed 
the formation of a second cell flow that circulates in an anti-clockwise direction inside the cavity 
at high Marangoni numbers. Furthermore, for high Rayleigh number, there exists a critical 
Marangoni number that causes the average Nusselt number to reach a stationary state. Hence, 
in this study, a wavy trapezoidal enclosure filled with nanofluid is examined with varying 
Marangoni number, Rayleigh number, and volume fraction, f, where the wavy side has 
wavelength 1, 2, and 5. 

Physical and mathematical formulation 

The left wavy wall of the trapezoidal enclosure is described by:  

 2π= 1 cos y
x A

H

  
   

  
 (1) 

The wavy side is set to a constant temperature of Th, and the right side of the wall, Tc, 
where the temperature of the former is higher than that of the latter. The height, H, and width, 
W, are assumed to be the same, H = W. The top and bottom walls are insulated and the fluid in 
the enclosure is water-based nanofluid. All physical properties of the fluid and nanoparticles 
are assumed to be constant. In this study, the flow is assumed to be steady, laminar, and 
incompressible, which implies that there is no viscous dissipation. The gravitational force acts 
in the vertical downward direction and the no-slip boundary condition is applied to all walls 
aside from the top one where the slip boundary condition is imposed. The fluid used in this 
study is water-based nanofluid containing Al2O3 nanoparticles and their thermophysical 
properties are referenced from Zaharuddin et al. [7]. For a 2-D flow inside a wavy trapezoidal 
cavity, the dimensionless governing equations are written: 
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With boundary conditions:  

 
1= = 0 and = 0 at = 2 2, 1
2

U V Y X X      (6) 

 = = 0 and =1 at = [1 cos(2π )], 0 1U V X A Y Y     (7) 
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with the dimensionless stream function: 
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where the following substitutions are used: 
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As nanofluid is being used in this study, the density, dynamic viscosity, thermal 
diffusivity, thermal expansion coefficient, heat capacitance, and thermal conductivity are: 
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The heat transfer rate for the hot wall is computed by local and average Nusselt 
number. The local Nusselt number at the heated wall is given by:  
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from Nasrin and Parvin [4] and hence, the average Nusselt number is:  
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Numerical technique 

The system of eqs. (2)-(9), are solved using the Galerkin technique of the finite element 
method in COMSOL 5.3, which is described in detail by Taylor and Hood [8], Nasrin and 
Parvin [6], and Dechaumphai [9].  

Results and discussion 

In this section, the results obtained by numerically solving the systems of eqs.  
(2)-(5) along with its boundary conditions (6)-(9) are presented in the form of streamlines, 
isotherms, Nuloc and Nuavg at the heated wall for various parameter values where 30 Ma 10 , 
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1 5,  Pr = 0.052, 3 410 Ra 10 ,   and 0% 3%.   The temperature of the wavy wall is 
set to be higher than that of the right wall, and the top and bottom walls are adiabatic with shear 
stress taking place on the top wall. Figures 1 and 2 show three different trapezium enclosures 
where the left side of the enclosure is designed to be wavy, with amplitude, A, and wavelength, 
l. The evolution of the fluid-flow and temperature distribution rely on the Marangoni number 
and hence, three different values were considered. From fig. 1, when shear stress is absent, the 
fluid in the enclosure moves in a clockwise direction, moving up of the left heated wall and 
then to the right of the cold wall, flowing down.  

  
Figure 1. Streamlines for l = 1, 2, 5, and Ra = 103 

(for color image see journal web site) 
Figure 2. Isotherms for  l = 1, 2, 5, and Ra = 103 

(for color image see journal web site) 

  
Figure 3. Streamlines for l = 1, 2, 5, and Ra = 104 

(for color image see journal web site) 

Figure 4. Isotherms for  l = 1, 2, 5, and Ra = 104 

(for color image see journal web site) 

At high Marangoni numbers for all wavelengths, two distinctive cells form in the cavity 
where the top cell circulates in a counter-clockwise direction while the bottom one moves 
clockwise, based on the positive and negative signs. Note that at Ma = 103, the concentration 
of the top cell is higher for l = 1 compared to l = 2 and l = 5, though the strength of the 
vorticity of the bottom cell is more prominent for l = 2. This is supported by the isotherms and 
it is evident that the deformations are much more noticeable for enclosures with wavelength 1 
and 2 for Ma = 103, as seen in fig. 2, where they form into a boomerang-like shape. The reason 
as to the absence of significant contortion for l = 5 is due to the wavy lines themselves, warping 
the distribution of temperature even when there is no shear stress. If the Rayleigh number is 
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increased from 103 to 104, the fluid inside the cavity is expected to have a much stronger flow 
and this can be seen in fig. 3. Even if the shear stress in non-existent, the walls of the single 
cells lose its uniform flow, seen in fig. 1 for all three cases and depict a slight turbulence. 
However, similar to the results in fig. 1, at high Marangoni values, the single cell splits into two 
and there is a noticeable increase in the intensity of the flow compared to the aforementioned. 
In addition, comparing the isotherms in fig. 4 to the ones in fig. 2, there is barely a difference 
in the distortion despite an increase in the Rayleigh number. Due to the wavy geometry, the 
plots along the hot side of the wall where the local Nusselt numbers are calculated are also wavy 
in nature. Figure 5 represents the local Nusselt for Ra = 103 and Ra = 104, and various 
Marangoni numbers. For the smaller value of Rayleigh number, it indicates that the heat transfer 
rates increase significantly as l increases, with l = 5 having the highest maximum Nuloc for all 
three cases of Marangoni number. However, as the Marangoni number gets bigger, the profiles 
for l = 2 and 2  seem to lose its periodic behaviour as 1Y   for Ma < 103. Furthermore, the 
local Nusselt value profiles seem to be decreasing with increasing Y for Ma < 1000 in all cases. 
This is likely due to the laminar flow shifting to turbulent flow, which affects the shear stress 
at the top part of the cavity by reducing its influence on the heat transfer rate. Figure 6 shows 
Nuavg with respect to the Marangoni number from 0 to 103 for l = 1, 2, 5. The Rayleigh number 
is set to 103 and 104, respectively, and from the figure, at high Marangoni numbers, specifically 
around the 750 mark, l = 1 and 2 share the same values before the former’s Nuavg surpasses 
that of the latter’s, though l = 5 still has the highest Nuavg overall. In the case when the Rayleigh 
number is increased to 104, l = 1 has the lowest Nuavg with l = 2 surpassing l = 5 as 
Ma 1000,  suggesting that for Ma 1000,  l = 2 is more efficient at transferring heat.  
Observing fig. 7, Nuavg increases linearly with increasing f. It can also be noted that =1  has 
higher Nuavg compared to the rest when Ma = 103. However, when the Rayleigh number is set 
to 104, l = 2 has the highest Nuavg.  

 
Figure 5. Local Nusselt values for (a) Ra = 103 and (b) Ra = 104 with  l = 1, 2, and 5 



Al’Aidrus, S. N. B. S. M. N
 

 

 
Figure 6. Average Nusselt values for (a) Ra = 103 and (b) Ra = 104 for varyng Marangoni number  

with l = 1, 2, and 5  

 

 
Figure 7. Average Nusselt values for (a) Ra = 103 and (b) Ra = 104 for varyng f with l = 1, 2, and 5 

Conclusion 

The problem of free convection and fluid-flow within a wavy trapezoidal enclosure 
with the left side of the wall heated has been studied. The dimensionless governing equations 
were solved using the finite element method. The results consisting of the streamlines, 
isotherms, Nuloc and Nuavg were presented and discussed. The observations made from this 
study are that there exists a secondary flow cell in the enclosure for all values of Rayleigh 
number when Marangoni number is big with the smaller cell at the top leaning into the hot wall. 
Furthermore, Nuavg increases linearly with f for all values of Marangoni number and Rayleigh 
number and finally, the heat transfer rate improves significantly with increasing wavelength.  
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