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This work is a continuation of the recent studies [1, 2], revealing that the unique 
form of the Bejan number is robust (unchangeable) and appears independently in 
all Hagen-Poiseuille fluid-flows with heat or mass transfer by convection. The 
other dimensionless groups, derived from the First law of thermodynamics (related 
to the convection heat or mass transfer), and named Bejan numbers are combina-
tions of the unique Bejan number with Prandtl or Schmidt numbers, respectively, 
and ratios of geometrical parameters of the system. In this paper we continue de-
veloping this idea through presenting new examples of problems in the field of 
convection mass transfer in pure laminar duct flows. 
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Introduction 

The Bejan number, derived from the fluid mechanics and First law of thermodynam-

ics, has been defined for a first time in 1988 by Bhattacharjee and Grosshandler [3] performing 

scale analysis of the x-momentum equation in the wall region of a flow over high temperature 

wall. Bejan and Sciubba [4] and Bejan [5] published a study related to the selection of board-

to-board optimal spacing, in order to maximize the heat transfer from a package of parallel 

plates that are cooled by forced convection. The obtained dimensionless group in the form: 

 
2pL




   

has been named by Bejan [4, 5] the pressure drop number. Petrescu [6] defined this group as 

the Bejan number: 

 
2

Be
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If the thermal diffusivity in the complex 
2 /pL   is replaced by the mass diffusivity, 

D, the new complex 
2/pL D  has been called by Awad [7] a new definition of the Bejan num-

ber. Later, Awad and Lage [8] defined a complex 
2 2/pL   named a general form of the Bejan 

number, where d is the corresponding diffusivity of the process in consideration: n, a, or D. A 
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historical view on the Bejan numbers is presented by Awad [9]. However, there are no any 

comments in these publications [6-9] related to the physical meaning of the defined dimension-

less groups.  

In the recently published paper [1], it was demonstrated by applying the classic fluid 

mechanics only, that the optimal board-to-board spacing can be derived, and in order to mini-

mize the pressure drop across a package of parallel plates, it has to obey the scaling relationship  

 
2

opt

2

D pL

L 

 
  
 

  (1) 

The obtained dimensionless group has been named unique Bejan number since it ap-

pears as robust (unchangeable) and independent criterion of similarity in all Hagen-Poiseuille 

fluid-flows with heat or mass transfer convection. Its physical meaning is a ratio of geometrical 

parameters of the system under study (slenderness ratio). All other dimensionless groups [6-9], 

derived from the First law of thermodynamics (related to the convection heat or mass transfer), 

and named Bejan numbers are combinations of the unique Bejan number with Prandtl or 

Schmidt numbers, respectively, and ratios of geometrical parameters of the system.  

When the pressure drop is imposed (fixed), the unique Bejan number is a criterion of 

similarity and governs the optimal spacings of the channels (slenderness ratio). If the geomet-

rical parameters are fixed, the unique Bejan number convers into dimensionless variable related 

to .p  

Many new additional evidences in order to extend the scope of implementation of the 

unique Bejan number and assess its role in Hagen-Poiseuille fluid-flow with convection heat 

transfer in pure laminar duct flows and laminar flows in channels filled with porous medium 

have been presented in [2].  

This paper is a continuation of the recent studies [1, 2] developing this idea through 

presenting new examples of problems related to mass transfer and combination of mass and 

heat transfer convection in pure laminar duct flows. The discriminated dimensional analysis 

(DDA) [10] has been applied, as a tool revealing the role and physical meaning of the unique 
Bejan number.  

Spacings for channels with mass transfer  

Hagen-Poiseuille fluid flow in duct with mass 

transfer and fixed Dp  

Consider (fig. 1) a stack of parallel boards 

(CV = L ´ H ´ 1), discussed also in [1, 2], where 

Hagen-Poiseuille fluid-flow with heat transfer 

takes place. Now, for the same geometrical con-

figuration we address a Hagen-Poiseuille flow 

where mass transfer takes place. The mass trans-

fer is based on the difference between species 

concentration of the exposed side the wall, Cw, 

and the bulk concentration of the stream, Cb. The flow is driven by the imposed p  through 

parallel-plates channels of length, L, and width 1, fig. 1. The objective is to define the optimal 

distance between the parallel-plates, Di,opt = ?. 

Using the DDA of Huntley [10], the list of relevant quantities is: 

 

Figure 1. Stack of parallel boards with forced 
convection mass transfer and constant species 
at the wall 
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 i,opt ( , , , , , )D f m p L D    (2) 

where m  is the mass fluid-flow, D – the mass diffusivity, and assuming that Di,opt depends on 
.m  Following Huntley [10], eq. (2) can be presented in the form: 

 i,opt
a b c d e fD m p L D   (3) 

Applying the DDA in the same way as in [2], the number of fundamental physical 

dimensions have been enlarged through dividing the basic unit of mass, M, into two new basic 

units, Mi and Mm, which present its internal diversity, as a matter of inertia Mi or substance Mm 

[10]. For this reason, the fundamental physical dimensions become Lx, yL , zL , Mi, Mm, and T. 

Accordingly, the dimensional equations are:  

i,opt[ ] ,yD L  
1[ ] ,m M T
  

1 1 2[ ] ,i x y zp M L L L T     [ ] ,xL L  
1 1 1[ ] x y zM L L L     

2 1 1
i[ ] ,yL M M T    

2 1[ ] yD L T   

The value of the exponents in eq. (3) can be obtained from the solution of the next set 

of equations:  

 0 b c d     

 
1 2 2b d e f       

 0 b d     

 0 b e    

 0 a d e     

 
0 2a b e f       

The values of the exponents are: 0,a   1/4,b    1/2,c   1/4,d   1/4,e   and 

1/4.f   The value 0a   reveals that Dopt does not depend on the prescribed mass flow and 

has to be omitted from the list of selected variables. As a result, eq. (3) becomes:  

 
1/4 1/2 1/4 1/4 1/4

i,optD p L D   (4) 

and can be arranged in the form:  

 

1/4 1/42
i,opt

2

D pL

L D





    
         

(4a) 

or  

 
i,opt 1/4 1/4Be Sc

D

L

 
 (4b) 

where Sc is the Schmidt number.  

The next important conclusions can be derived from this result, namely:  
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– Dividing the basic unit of mass M into two new basic units: Mi and Mm, to enlarge the 

number of fundamental physical dimensions as Lx, yL , zL , Mi, Mm, and T, the unknown 

value of the exponent n in eq. (38) [1] has been defined as 1/4.n    Equation (4a) can be 

also transformed in the form: 

 

1/4
2

i,optD pL

L D


 
  
   

(5) 

where the new complex 
2 /pL D  has been called by Awad [6] a new definition of the Bejan 

number.  
– If we consider the same CV and Hagen-Poiseuille fluid flow with heat transfer, and fulfill 

the same procedure, outlined foregoing, eq. (4a) will take the form: 

 

1/4 1/42
i,opt

2

D pL

L





    
       

 (6) 

where the mass diffusivity, D, is replaced with the thermal diffusivity, a. This result has already 

been discussed in [2].  

– Note that the dimension of the kinematic viscosity n 
2 1 1

i( )yL M M T
 

 is different compared 

to those of thermal diffusivity a and mass diffusivity 
2 1( ).yL T 

 This is another way to 

reveal the difference between the momentum transfer with this one of heat or mass transfer.  

Hagen-Poiseuille fluid-flow in duct with  

mass transfer and unknown Dp 

Consider now, the case with the control volume i( 1),D L  fig. 1, where , , ,m H L   

and Di are imposed, but the pressure drop Dp is unknown. In this case, the Bejan number has 

completely different physical meaning since it converts into dimensionless variable with respect 

to Dp, namely: 

 

42
1 i

2
Sc

DpL

L


  

  
 

 (7) 

Hagen-Poiseuille flow in duct with simultaneous  

heat and mass transfer and fixed Dp  

Consider again the stack of parallel boards (CV 1)L H   , fig. 1. In this example, 

Hagen-Poiseuille fluid-flow with simultaneous heat and mass transfer takes place. The mass 

transfer is based on the difference between species concentration of the wall, Cw, and the bulk 

concentration of the stream, Cb, whereas the heat transfer is based on the difference between 

the wall temperature, Tw, and the bulk temperature of the stream, Tb. The flow is driven by the 

imposed Dp through parallel-plates channels of length L and width 1, fig. 1. The objective is to 

define the optimal distance between the parallel-plates, Di,opt = ?.  

In this case, the list of relevant quantities is: 

 i,opt ( , , , , , )D f p L D     (8) 

where D and a are the mass and thermal diffusivities. The mass fluid-flow, ,m  has been ex-

cluded from the list of variables. Following Huntley [10], eq. (8) can be presented in the form: 



Zimparov, V. D
 

 

 i,opt
a b c d e fD p L D    (9) 

Applying again the DDA in the same way as foregoing, and using the fundamental 

physical dimensions as Lx, yL , zL , Mi, Mm, and T, the dimensional equations are: 

i,opt[ ] ,yD L  
1 1 2

i[ ] ,x y zp M L L L T     
1 1 1[ ] ,x y zM L L L     [ ] ,xL L  

2 1 1
i[ ] yL M M T    

2 1[ ] ,yD L T   
2 1[ ] yL T   

The value of the exponent of each variable in eq. (9) can be obtained from the solution 

of the next set of equations:  

 0 a b c     

  1 2( )a c d e f        

  0 a c     

  0 a d    

  0 c d    

  0 2a d e f       

The values of the exponents are: a = –1/4, b = 1/2, c = 1/4, d = 1/4, e = e, 
 f = 1/4 – e. One of the exponents has not been obtained since in the set of equations there are 

only five independent equations. As a result, eq. (9) becomes:  

 
1/4 1/2 1/4 1/4 1/4

i,opt
e eD p L D     (10)  

which can be arranged in the form:  

 

1/4 1/42
i,opt

2

eD pL

L D

 



       
           

, or  (11a) 

 
i,opt 1/4 1/4Be Pr Le e

D

L

  
 (11b) 

where Le /D  is the Lewis number. The Lewis number can also be expressed in terms of the 

Prandtl and Schmidt numbers as Le Sc/Pr . In this case, eq. (11b) yields: 

 
i,opt 1/4 1/4Be Pr Sce e

D

L

     (11c) 

The conclusions from this result can be outlined: 

– The optimal distance between the parallel-plates (slenderness ratio) Di,opt/L depends on 

three criteria of similarity: unique Bejan number, Prandtl number, and Lewis numbers. 

– Using the DDA, the values of powers of Bejan and Prandtl numbers have been obtained. 

– If there is no mass transfer in the channels, 0e   and eq. (11c) reduces to the form of eq. 

(6): 
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i,opt 1/4 1/4Be Pr

D

L

 
 

– If there is no heat transfer in the channels, 1/4 0e    and eq. (11c) reduces to the form 

of eq. (4b): 

 
i,opt 1/4 1/4Be Sc

D

L

 
 

Hagen-Poiseuille flow in duct with simultaneous  

heat and mass transfer and unknown Dp  

In this case, , , ,m H L  and Di are imposed, but the pressure drop Dp is unknown, and 

the unique Bejan number converts into dimensionless variable with respect to Dp, namely: 

 

42
1

2
Pr Le e iDpL

L


   

 
 

 (12) 

 Conclusions 

This paper presents additional evidences in order to extend the scope of implementa-

tion of the unique Bejan number and assess its role in Hagen-Poiseuille fluid-flow with con-

vection mass transfer in pure laminar duct flows and laminar flows in channels filled with po-

rous medium.  

The unique Bejan number is robust (unchangeable) and present independently in Ha-

gen-Poiseuille fluid-flow with heat or mass transfer convection. Its physical meaning is a ratio 

of the geometrical parameters of the system under study (slenderness ratio). Other dimension-

less groups, derived from the First law of thermodynamics (related to the convection heat or 

mass transfer), and named Bejan numbers are combinations of the unique Bejan number with 

Prandtl or Schmidt numbers, respectively, and ratios of geometrical parameters of the system.  

When the pressure drop is imposed (fixed), the unique Bejan number is a criterion of 

similarity and governs the optimal distance of the channels (slenderness ratio). If the geomet-

rical parameters are fixed, the unique Bejan number converts into dimensionless variable re-

lated to Dp.  

The power of the DDA has been successfully applied, as a tool to reveal the role and 

physical meaning of the unique Bejan number. 
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