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This paper studies a spectral collocation approach for evaluating the numerical 
solution of the stochastic multi-term time-fractional diffusion equations associated 
with noisy data driven by Brownian motion. This model describes the symmetry 
breaking in molecular vibrations. The numerical solution of the stochastic multi-
term time-fractional diffusion equations is proposed by means of collocation points 
method based on sixth-kind Chebyshev polynomial approach. For this purpose, the 
problem under consideration is reduced to a system of linear algebraic equations. 
Two examples highlight the robustness and accuracy of the proposed numerical 
approach.  
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Introduction 

More recently, fractional differential equations have appropriately described many 
complicated phenomena and dynamic processes which can not be explained by classical differ-
ential equations [1-4]. Some recent studies reporting multi-fractional equations can better coin-
cide with experimental results and anomalous processes [3-5]. Moreover, stochastic differential 
equations have attracted the attention of the research community for years due to their uncer-
tainty model being closed with the real world [5-7]. The aim of this paper is to bring together 
two new areas in fractional, namely, multi-terms fractional integrated with stochastic differen-
tial equation which can successfully describe many phenomena in the real world  
[8-11]. The current work develops a numerical approximation of stochastic multi-term time- 
-fractional diffusion equations (SM-TT-FDE) rising in heat transfer:  

 ( ) = [ ( )] ( , ) ( , ) ( , )t xx xB t u x t u x t f x t      (1) 

where ( , )x t T , with the boundary and initial conditions:  

 
( , ) = ( , ), 0 < , ,

( ,0) = ( ),
u x t x t t T x

u x x x





 


 (2) 
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where 1( ) = m k
t k k ta



 , k
t


 denotes a fractional differential operator, where k  denotes 
1(1 > 0)m k        fractional orders. Here λ, µ, and ϑ indicate real constants. We 

note that coefficients ak are positive real constants and ∂Ω denotes the boundary of Ω. Let 
( ) := d ( )/dB t B t t  be the time white noise with the function where [0, ]( )t TB t   is the Brownian 

motion conformed by a filtration [0, ]={ }B t t TF F   in a probability space ( , , ).B B BF P  Further-
more, the source term f(x, t), φ(x, t), and η(x) are some stochastic processes defined on 
( , , )B B BF P  and u(x, t) is a known function to be found.  

The sixth-kind Chebyshev polynomial collocation  

In this section, we address a sixth-kind Chebyshev polynomial (SKCP) approach to 
archive the numerical solution for the under consideration problem shown in eq. (1) [5, 7]. The 
U(x, t) can be considered as approximating the solution of eq. (1) by means of SKCP:  

 , ,
=0 =0

( , ) ( , ) = ( ) ( ) = ( ) ( )
N M

T
jN M i j i

i j

u x t U x t x t x t J CJ  (3) 

where  

 00( ) = [ ( ),..., ( ),..., ( )] , ( ) = [ ( ),..., ( ),..., ( )]T T
i Mi Nx x x x t t t tJ J  (4) 

where ˆ( ) = [(2/ ) 1]i ix l x   on the interval [0, I] and ˆ( ) = [(2/ ) 1]j jt l t   on a time interval 
[0, ]T  [7]. Here, C is the matrix with all entries unknown as in the following form:  

 

0,0 0,

,0 ,

( 1) ( 1)

=

M

N N M

N M

 

 

  

 
 
 
 
 
 

C  

Theorem 1 [7] Let ( )tJ  is the shifted SKCP vector as (4), see [7] then: 

 ( ) = ( )k k
t t t
 

J  

The Caputo fractional derivative of the vector αk of ( )k t


  is ( )tJ  and is defined: 

 
1

, ,,1
=1 =1 =1

( ) = 0, ( ), , ( ), , ( )
Tj M

k k kk
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t t t t
  

  
 

  
  
    

where  

 , ,
( 1)( ) =

( 1 )
rk k

r j r jr
k

r
t t

T r

 
 



 

  
 

According to eqs. (1) and (3) and imposed Theorem 1, we have: 

 
=1

( ) ( ) = [ ( )] ( ) ( ) ( ) ( ) ( , )
m

T T Tk
k xx x

k

a x t B t x t x t f x t


      J C J CJ J CJ  (5) 

where  
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 0( ) = [ ( ),..., ( ),..., ( )]' ' ' T
x i Nx x x xJ  

 0( ) = [ ( ),..., ( ),..., ( )]'' '' '' T
xx i Nx x x xJ  

From the conditions provided in eqs. (2) and (3), we have: 

 (0) J( ) = (0, ),   ( ) J(0) = ( ),   ( ) J(0) = ( )T T Tt t x x x x  J C J C J C  (6) 

Assuming x0 = 0, xN = l, and also considering x1, …, xN–1 as roots of 1( )N x  and 
, = 1,..., ,jt j M as the roots of ( ).M t  By assuming those, Λ, Λx, and Λxx, can be defined:  

 1 1=[ ( ),..., ( ),..., ( )]Ti Nx x x  J J J  (7) 

 1 1=[ ( ),..., ( ),..., ( )]Tx x x i x Nx x x  J J J  (8) 

 1 1=[ ( ),..., ( ),..., ( )]Txx xx xx i xx Nx x x  J J J  

where the matrices Λ, Λx, and Λxx are of the order ( 1) ( 1)N N    and: 

 
1 ( 1)

1 ( 1)

= [ ( ),..., ( ),..., ( )]

= [ ( ),..., ( ),..., ( )]

j M M M

k k k k
j M M M

t t t

t t t
   

 

 



   

J J J
 (9) 

 By evaluating eq. (5) at ( 1)N M   collocation points (xi, ti) for 
= 1, , 1i N   and =1, , ,j M  we have: 

 
=1

C = C C
m

k
k xx x

k

a


         (10) 

in which: 

 1 1= ( ,... ,..., )j Mdiag b b b         

where 1 0= ( ) ( ), = 0j j jb B t B t t  and: 

 ,=[ ], =1,..., 1, =1,...,i jf i N j M  

To approximate initial and boundary conditions, we impose collocation points ti in eq. 
(6) for each collocation points xi: 

 0 1( )C = ,   ( )C = ,   C (0) =
TT Tl l  J Y J Y J Y  (11) 

where  

 0 1 1

0 0

= [ (0, ),..., (0, ),..., (0, )] , = [ ( , ),..., ( , ),..., ( , )]

= [ ( ),..., ( ),..., ( )] , = [ ( ),..., ( ),..., ( )]

T T
j M l j M

T T
i N i N

t t t l t l t l t

x x x x x x

     

  

Y Y

J J J Y
 

Using the Kronecker product, eq. (10) transforms to: 

 = vec  (12) 
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where  

 
=1

= ( ) ( )
m

T T Tk
k xx x

k

a


         

and = ( ), = ( ).vecvec vec  Further, eq. (11) is equivalent to:  

 0 0= , = , =l lE E EY Y Y  (13) 

where  

 0= (0) , = (0) , = ( )T T T T T
lE E E l    J J J  

Thus, from eqs. (12) and (13), we gain a system of linear equations =A B  in which:  

 0 0= [ , , , ] , = [ , , , ]
T TT T T T T T T T

l vec lE E E Y Y YA B  

Solving this system yields an estimate , ( , )N MU x t  for the solution of eqs. (1) and (2), 
which has the form eq (3).  

Numerical results 

Numerical examples of SM-TT-FDE to demonstrate the reliability, efficiency and ac-
curacy of the proposed method are reported in this section. To evaluate the accuracy of the 
proposed method, we use -L norm for = 80P  and =100P  separated Brownian paths. Also, 
the convergence order for various collocation points by defining:  

11

2 2

|| ||
= log

|| ||
N

N

N N

E
CO

E





 

is reported. Numerical calculations are performed in MATLAB software with a desktop com-
puter, Intel(R) i7-10700, 32GB RAM.  

Example 1 Let us consider the SM-TT-FDE in the case of three fractional terms with 
the analytic solution given by 

25 2
1 2 3( , ) = ( ) .xu x t x t e      

 
31 2

2
1 2 3

( , ) ( , ) ( , ) = ( ) ( , ) ( , ) ( , ), 0 <

( ,0) = (0, ) = 0,   (1, ) = ( )
t t t xx xu x t u x t u x t B t u x t u x t f x t t T

u x u t u t et

 


  

    

 
 

and λ = 0.01 and:  

 



2 2 2 21 2 2
1 2 3

1 2 3

4 2 2 3 2 2 4

(3) (3) (3)( , ) = ( )
(3 ) (3 ) (3 )

0.01 (5 2 ) [2 ( )][2 (10 11 2 )]

xf x t e t t t

x t x B t x t x x

  
  

  

     
    

     

    

 

In tab. 1 we report the error norms L∞ and convergence order (CO) for α1 = 0.75, 
α2 = 0.1, and α3 = 0.05, and several values of N. Figures 1(a) and 1(b) show the profile of the 
exact solution and numerical solution for M = N = 12, respectively, considering α1 = 0.75, 
α2 = 0.1, and α3 = 0.05.  
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Table 1. Absolute error at T = 1 with α1 = 0.75, α2 = 0.1, and α3 = 0.05 for Example 1 

δτ M = N L∞ CO N = M L∞ CO 

1
M

 

4 1.37716E-01 – 10 1.99980E-05 10.6749 

5 8.85960E-02 9.2300 11 1.15496E-05 12.3413 

6 1.06741E-02 4.3334 12 2.19685E-06 4.0935 

7 1.03037E-02 1.3452 13 6.86568E-08 9.4304 

8 5.73450E-03 6.5349 14 6.48553E-09 4.6052 

9 2.37930E-04 4.4716   

 
Figure 1. The exact and numerical solution of Example 1 with α1 = 0.75, α2 = 0.1, and α3 = 0.05;  
(a) exact solution and (b) approximated solution 

Example 2 We assume the following SM-TT-FDE with the exact solution u(x, t) = (α1 + 
α2)x5(t2 – t)sin(πx) in computational domain x = [0, 1]. 

31 21 1 1( , ) ( , ) ( , ) = ( ) ( , ) ( , ) ( , )
4 4 2

( ,0) = (0, ) = 0,   (1, ) = 0, 0 <

t t t xx xu x t u x t u x t B t u x t u x t f x t

u x u t u t t T

 
   



 

and: 

 

2 1 2 11 1 2 2

1 2 3
1 1 2 2

2 13 3
2 2 2

3 3

(3) (2) 1 (3) (2)( , ) = ( ) sin(π )
(3 ) (2 ) 4 (3 ) (2 )

1 (3) (2) π( )cos(π ) [π ( )]( )sin(π )
4 (3 ) (2 )

t t t t
f x t x

t t
t t x B t t t x

   

 

  
   

 

   

 

       
        
              

   
       
      

 

Here, we present the proposed approach for numerical solution of SM-TT-FDE hav-
ing Browning motion coefficients. Table 2 presents CO and the error norm of proposed method 
at diverse value of collocation points with 1 2= 0.9, = 0.5,   and 3 = 0.3  for =100P  ran-
dom paths. Initial and boundary conditions imposed in this example are derived from the exact 
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solution. Figure 2(a) illustrates the exact solution compared with the approximation at different 
points in time. Further, fig. 2(b) shows the contours of error for M = N = 0 at T = 1.  

Table 2. Error absolute L∞ at various values of M = N by letting T = 1 and α1 = 0.9, α2 = 0.5, and α3 = 0.3 
for Example 2 

δτ M = N L∞ CO N = M L∞ CO 

1
M

 

2 1.55820E-01 – 10 1.19285E-10 308.3762 

4 1.22736E-01 1.2696 12 1.01443E-10 1.1758 

6 1.93902E-05 6329.8203 14 1.39127E-10 0.7291 

8 3.67847E-0 527.1268   

 
Figure 2. The diagram (a) comparing amount exact solution and approximate solution and  
(b) error at final time T = 1 for Example 2 

Conclusion 

This paper adopted a spectral collocation approach based on SKCP approach for the 
numerical solution of the SM-TT-FDE associated with noisy data driven by Brownian motion. 
The time fractional derivatives have been described by means of Caputo sense. To verify the 
concept of Brownian motion on the purposed method, we applied = 80P  and =100P  random 
paths for two examples. Numerical results in comparison with the analytical solution demon-
strate the accuracy and robustness of the proposed method.  
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