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When a particle distributes at a rate that deviates from the classical Brownian 
motion model, fractional space derivatives have been used to simulate anomalous 
diffusion or dispersion. When a fractional derivative substitutes the second-order 
derivative in a diffusion or dispersion model, amplified diffusion occurs (named 
super-diffusion). The proposed approach in this paper allows seeing the physical 
background of the newly defined Caputo space-time-fractional derivative and 
indicates that the order of convergence to approximate such equations has 
increased.  
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Introduction 

The diffusion equation is a PDE based mathematical equation that represents the 

physical theory of particles moving from a high density to a low density situation randomly and 

irregularly. It is a term used in physics to explain the macroscopic action of so many micro-

particles in Brownian motion, which is caused by the particles’ random movements and colli-

sions. In the diffusion procedure, this model defines the variations in place and time of a 

physical quantity. Various characteristics, including thermal conductivity and electromagnetic 

wave dispersion, can indeed be represented by using the diffusion model. Moreover, the 

diffusion process in porous media is a combination of linear and non-linear diffusion equations 

that offer Darcy-scale estimates of a variety of flow and transport processes in porous media 

that are associated with diffusion in general [1]. 

These processes are sometimes not connected to Brownian particle motion in a free 

fluid, and instead explain pressure diffusion, the diffusive transmission of a phase-field including 

such fluid saturation, and so on. In fact, the discussed model can be modeled using equations with 

classical derivatives of space and temporal. But to simulate a particle motion that distributes at 

varying rates than the classical model, fractional derivatives can be used. The spatial order deriv-

ative is frequently among one and two due to physical implementation. In addition, the temporal 

(time) fractional derivative can be used to represent particle motion in which the period between 
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two leaps is longer than usual [2]. The main purpose of the paper is to discuss the numerical 

method for the 2-D space-time fractional diffusion equation (2-D STFDE):  

 0 ( , ) = ( , ) ( , ), = (0,1) (0,1), 0 <c z x z x f x x T
          (1) 

where =[0,1] [0,1],   ( , )f x   is a source term. The operator ( , )z x   is: 

 0 0( , ) = ( , ) ( , ) ( , ) ( , )c c
x yz x p x z x q x z x        

where the diffusion coefficients are ( , ), ( , ) 0p x q x    and the fractional orders are 1 < α, β ≤ 2, 

and 0 < 1.   The initial 0( ,0) = ( )z x x  and boundary conditions are obtained:  

 
0 1 0

1

(0, , ) = ( , ), (1, , ) = ( , ), ( ,0, ) = ( , ),

( ,1, ) = ( , ), > 0

z y y z y y z x x

z x x

        

   
 (2) 

where 0 ( , )c z x
   is the left Caputo fractional derivatives that are defined in [3]. The classical 

diffusion model is constructed by =1, = = 2.     

Moreover, we know that the values 1< , < 2,   and 0 < <1  show a super-dif-

fusion and super-slow diffusion model, respectively. For any positive values of g leads to a 

super-fast diffusion equation [4]. There are other models such as radiation and absence of fluid 

motion and transient heat diffusion. Methods for solving these types of models are represented 

in [5, 6]. Many numerical methods have been used to solve diffusion equation, and several types 

of numerical methods used in recent years have been described in [7-9].  

Implementation of numerical method for 2-D STFDE 

To obtain the full discretization of eq. (1), two subsections are required. Since the 

convergence order of the linear approximation for the left Caputo time fractional derivative in 

the infinite interval is 2( )   in [10], we use the quadratic interpolation of [11, 12] and make 

some remarks on the relationship between cofficients them in the first subsection. The technique 

for the 2-D issue of eq. (1) is shown in the second subsection with using the second shifted 

Chebyshev basis and the full discrete scheme of 2-D STFDE is obtained.  

Discretizations for the right Caputo fractional derivative 

Let = , = 0,1, ,j j j J   be the node points of the temporal sense in each interval 

[0, T] that = /T J  is the temporal step size. The quadratic approach is applied to discrete the 

Caputo derivative for 0 < 1   is [11]:  

 
3
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(2 )
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
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 
  (3) 

where ,j kS  is the unknown coefficients that can be described for the variant values j in the 

following form: 
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Now, by substituting eq. (3) in eq. (1) and after simplifying the following relation is 

obtained: 

 

1

,,

=0

= ,   = 1,2, ,
j

jj j k j
j kJ J

k

S z z S z f R j J


     

where = ( , , ),j
jz z x y t , = (2 ) ( , , )j

jz z x y t      and = (2 ) ( , ).
j

f f x    Further-

more, the truncation error fulfills 3( ).jR   Deleting ,jR  we obtain the semi-discrete 

scheme of the eq. (1): 

 

1

,,

=0

= ,   = 1,2, ,
j

jj j k
j kJ J

k

S Z Z S Z f j J


    (4) 

where 
jZ  is the approximate solution in the time j.  

Full scheme for 2-D fractional diffusion model 

Now we’ll examine the full discretization scheme for 2-D STFDE. In the time 

direction, we apply the quadratic approach to get the semi-discrete scheme (4). But to get the 

full discrete, we need to do spatial discretization. To do this, we use the collocation method 

based on the shifted Chebyshev polynomials of the second kind. The extension of function 
( , )jz x   can be written to a finite number of sentences, ( 1) ( 1),N M    using this type of 

polynomial:  

 
=0 =0

( , ) = ( )
N M

j
j nm nm

n m

z x u x u  (5) 

where ( )nmu x  and 
j
nmu  are SCP and the unknown coefficients, respectively. The unknown 

coefficients are determined: 

 

1 1 2 1/2

2 2 1/2
0 0

( ), ( , ), ( ) 64 ( )
= = ( , ) ( )d d

( ), ( ) ( ), ( ) π ( )

n j mj
nm j nm

n n m m

u x z x t u y x x
z x t u x x y

u x u x u y u y y y 

   

   
 u  (6) 

where .   denotes the inner product in the space 
2[(0,1) (0,1)].L   To continue the discretization 

of eq. (4), we need to have the closed form of the fractional derivative of the ,   order for 

basis polynomials. This form is obtained in the paper [13]: 
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 (7) 

where α and β are the ceiling of a and b, respectively. The known cofficient ,n k


N  is defined:  

 ,

( 1) 4 (2 2) ( 1)
=

( 1) (2 2 2) ( 1 )

n

n

n n

n n

 



   

      

    

     
N  



Aghdam, Y. E
 

 

For , ,m

N  a relation like the previous one is defined. Substituting eqs. (5) and (7) in 

eq. (4), we have:  
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=0 =0 =[ ] =0 =0
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=0 =[ ] =0
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 (8) 

In eq (8), there are ( 1)( 1)N M   unknowns that must be specified. By placing 

( 1)( 1)N M   roots of SCP, ( 1)( 1)N M   equations are created, which, considering the 

following boundary conditions the above relation, becomes a linear system in each time step: 

 

2
0 1

=0 =0 =0 =0

2
0 1

=0 =0 =0 =0

( 1) ( 1) ( ) = ( , ),  ( 1) ( ) = ( , )
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m j j
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 

 

u u

u u

 (9) 

Furthermore, we apply 0( ,0) = ( )z x x  in eq. (5) combining with eq. (6) to achieve 

the initial solution 
0 .nmu  

Numerical results 

This part demonstrates the performance of the suggested method on two test issues in 

order to illustrate its efficacy for the various values of J, M, and N. The considerable matter of 

the provided results is to illustrate that the numerical results approve the related proved 

theorems about the temporal-discrete schemes convergence order. We calculate the 

convergence order and rate in temporal  

2

(2 )
= ,   = 2log

( )

COL
CO CR

L








 
 
   

to showcase the new method validity. We took the following examples from papers [8-10] and 

compared the numerical results with these results. In these papers, the order of convergence is 

equal to 2= ( ),TCO    while the new method has the convergence order of 
3= ( ).TCO    

Example 1 Investigate the following 2-D STFDE with the exact solution 
2 3 3( , ) = ( 1) , .z x x y x      

0.5 1.2 1.2 1.8 1.8 3 3 1.5 2
0 0 0

2 3 2 3

(2.8) (2.2) 8
( , ) = ( , ) ( , ) 2 2

6 6 3 (0.5)

(0, , ) = ( ,0, ) = 0, (1, , ) = ( 1) , ( ,1, ) = ( 1) , 0 <

c c c
x yz x x z x y z x x y

z y z x z y y z x x T



 
    



      

 
    

 

  
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The exact solution is used to determine the initial condition. Table 1 makes a 

comparable evaluation of the error L  between the methods of [8-10] and the proposed 

method. It is clear that the proposed method can better approximate the exact solution ( , ).v x   

The order of convergence of the approximating solution in L  and 2L -norms is close to 
3( ),   as shown by the convergence results shown in tab. 2.  

Table 1. Comparing the absolute error L¥ using the suggested technique and the methods [8-10]  
at T = 1 for Example 1 

Table 2. The convergence order, CO, and convergance rate, CR, of the current method with N = M = 5 
at T = 1 for Example 1 

 

Example 2 Investigate the following 2-D STFDE with the exact solution 
3 3.6( , ) = [exp( ) 1] .u x x y     

 

0.5 1.8 1.6
0 0 0

2.8 2.6

4.6 4 0.5
1 1

( , ) = ( , ) ( , ) ( , ) ( ) ( , ), , 0 <

(2.2) 2
( , ) = ,  ( , ) =

6 (4.6)

2
( , ) = 2[exp( ) 1] exp( ) (0.5,1.5, )

(0.5)

c c c
x yz x a x z x b x z x f x x T

a x x y b x y x

f x y x F

       


 



    


   

   

 

where 1 1(0.5,1.5, )F   is the Kummer confluent hypergeometric operator. The exact solution 

is used to determine the initial and boundary conditions. Table 3 shows a comparable evaluation 

of the error L¥ between the methods of [9, 10] and the proposed method. It is clear that the 

proposed method can better approximate the exact solution ( , ).v x   The order and rate of 

convergence of the approximating solution in L¥ and L2-norms is close to 
3( ), 

 as shown 

by the convergence results shown in tab. 4.  

Dt M = N [8]  [9] N, M [10] Current method 

1/10
 

10 9.93756 ´ 10–2 8.43962 ´ 10–3 3, 5 
1.56003 ´ 10–3  2.57562 ´ 10–5 

1/20
 

20 7.14376 ´ 10–2 8.34223 ´ 10–3 5, 7 
4.30068 ´ 10–4 4.30422 ´ 10–6 

1/40
 

40 4.23914 ´ 10–2 7.23612 ´ 10–3 7, 9 
1.46784 ´ 10–4 7.29734 ´ 10–7 

1/100
 

100 1.87382 ´ 10–2 5.40802 ´ 10–3 9, 11 
3.70882 ´ 10–5 7.20669 ´ 10–8  

dt L¥ CO
 

CR
 

L2 CO
 

CR
 

1/10
 

2.56872 ´ 10–5     5.17407 ´ 10–5    

1/20
 

4.29776 ´ 10–6 2.59059 6.02343 8.58292 ´ 10–6 2.59176 6.02833 

1/40
 

7.32854 ´ 10–7 2.55199 5.86441 8.58292 ´ 10–6 2.55278 5.8674 

1/80
 

1.26830 ´ 10–7 2.53063 5.77824 2.53034 ´ 10–7 2.53129 5.78087 

1/160
 

2.2335 ´ 10–8 2.51859 5.73023 4.41423 ´ 10–8 2.51910 5.73223 
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Table 3. Comparing the absolute error L¥ using the suggested technique and the methods [9, 10] at  
T = 1 for Example 2 

Table 4. The convergence order, CO, and convergence rate, CR, of the current method with N = M = 7 
at T = 1 for Example 2 

Conclusion 

Using the spectral method based on SCP, this paper suggested a numerical method for 

solving the 2-D STFDE. This approach is divided into two parts: the first part in which the time-

fractional derivative is approximated using the quadratic interpolation of the order 
2( ), 

 

and the second part in which the spectral method is used for spatial approximation. The 

numerical results are showed that the technique is unconditionally stable and convergent. It 

confirmed the theoretical results and comparing to exact solutions and existing schemes in the 

literature demonstrates the new method accuracy and efficiency.  
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