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In this article, based on the extended fan-expansion method, novel soliton wave 
solutions of the Vakhnenko-Parkes equation are constructed. The stable property 
of the obtained analytical solutions is tested by implementing the Hamiltonian 
system's characterizations. The applied method is effective and applicable for 
many problems of non-linear PDE in mathematical physics. 

Key words: Vakhnenko-Parkes equation, extended fan-expansion method, stable 
property, soliton wave solutions 

Introduction 

The study of the non-linear PDE (NLPDE) occupies the thinking of many researchers. 

Much of their research has been done to determine the exact solutions of the non-linear 

evolution equations (NLEE). The investigations of exact solutions of NLEE have a great deal 

to know the structure, provide better information and its applications. Therefore, to calculate 

the exact and solitary solutions of NLPD, the researchers introduced many methods. Such as 

inverse scattering transform method, Darboux transformation method, Hirota’s bilinear 

method, homogeneous balance method, solitary wave ansatz method, Jacobi elliptic function 

expansion method, the tanh function method, F-expansion method, projective Ricatti equation 

method [1-14], and so on. Among them is the extended Fan-expansion method [15-18], a 

powerful mathematical tool to investigate the exact solutions for NLEE. We will employ this 

method for solving the Vakhnenko-Parkes equation [19-22]. 

In this paper is the following strategy was applied: 

– Firstly, toinvestigate the analytical solutions of the Vakhnenko-Parkes equation. 

– Secondly, to study stability property of the obtained analytical solutions based on the 

Hamiltonian system’s characterizations [24, 25] 

– Finally, present general conclusions. 

–––––––––––––– 
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Application 

In this part, we apply the extended fan-expansion method to the considered model 

then studying the stability property of the obtained analytical solutions.  

Solitary wave solutions 

Consider Vakhnenko-Parkes equation in the following formula:  

 
2

xxt xt      0x tuu u u u u    (1) 

where u = u(x, t) describes high-frequency waves in the relaxation medium. Applying the next 

wave transformation ( , ) ( ),   ,u x t x ct      then integrating the results, convert the system 

(1) into:  

 
3 ' 23    '' 3 ( ) 0s       (2) 

where s is the integration constant. Using the homogenous balance principles and generalized 

form of solution based on the suggested scheme get the next general solutions: 
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where  0 1 2,  , ,  a a a are arbitrary constants to be evaluated later. Additionally, ( )   statisfies 
' 2[ ( )], ( )     where 𝜚 is arbitrary constant to be evaluated later. Employing the 

suggested method’s steps, get the following values of the previously shown parameters. 

Case I 
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0 1 26( ), 12 , 6, 0a a a s         

Case II 

 
2 3

0 1 22(3 ), 12 , 6, 64a a a s          

Thus, we deduce the exact traveling wave solution of studied model are given as 

follows. 

For 0,  we get: 

 
1 2, 6 Sec[( )( ) ]Iu x t ct x    (4) 

 
2 2( , ) 6 Csc[( ) ]Iu x t ct x    (5) 

 
1 2( , ) 2 (1 3Tan[( ) ] )IIu x t ct x     (6) 

   2
2 , 2 2 3Csc( )IIu x t ct x   

 
 (7) 

For 0,  we get: 

 
3 2, 6 Sec[( )( ) ]Iu x t ct x  

 (8) 

 
4 2, 6 Csc[( )( ) ]Iu x t ct x    (9) 
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For 0,  we get: 
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Figure 1. Soliton wave representation in 3-D, 2-D, and contour plots for eq. (4) when  
–= 4  and = 5c  

 

Figure 2. Soliton wave representation in 3-D, 2-D, and contour plots for eq. (5) when  
–= 4  and = 5c  

 

Figure 3. Soliton wave representation in 3-D, 2-D, and contour plots for eq. (6) when  
–= 1  and c = 2  
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Figure 4. Soliton wave representation in 3-D, 2-D, and contour plots for eq. (7) when  
– 5= 1  and c = 5  

Stable characterization 

Studying the stability of the previously obtained solutions based on the Hamiltonian 

system's characterizations through calculating the momentum of these solutions as following: 
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Thus, the stability conditions of these solutions are given by: 
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Consequently, eqs. (4), (5) are unstable while eqs. (6), (7) are stable solutions. Using 

the same technqiue for studying the sable property of the obtained solutions, gives a clear vision 

of the high-frequency waves in the relaxation medium. 

Conclusion 

In this paper, the extended fan-expansion method successfully constructs many new 

solutions for solving the Vakhnenko-Parkes equation. These solutions have been represented 

through some graphs (figs. 1-4). Additionally, the stability property of the obtained solutions 

has been investigated through the Hamiltonian system's characterizations  
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