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In this paper, we consider the non-classical heat equation with singular memory 
term. This equation has many applications in various fields, for example liquids 
mechanics, solid mechanics, and heat conduction theory first, we prove that the 
solution exists locally in time. Then we investigate the converegence of the mild 
solution of non-classical heat equation, and the mild solution of classical heat 
equation.  
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Introduction 

In this paper, we consider the fractional Sobolev equation: 
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If k = 0, problem is called classical heat equation [1-4]. The equation previously 

described is a special case of the non-classical diffusion equation and has many applications in 

liquids mechanics, solid mechanics, and heat conduction theory, see for example [5, 9]. Aifantis 

in [5] showed that the classical reaction-diffusion equation does not include aspects of the 

reaction problem – diffusion, and it ignores the viscosity, elasticity, and pressure of the 

environment during solids diffusion, etc. He built mathematical models using a variety of 

concrete examples that could contain elasticity and pressure by the following equation: 

 = ( )t tw w k w F w g     (2) 

As we know, in some confounding process, when we study the elasticity of a 

conductive medium, we need to add fading memory to eq. (2). The important reason that people 

are interested in studying the equations that contain the term of memory is the speed of energy 

dissipation for eq. (1) faster than the conventional non-classification diffusion eq. (2). A 

significant difficulty in examining this equation is the presence of terms tu  in eq. (1). Since 
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the apperance of this term, it is impossible to apply the compact Sobolev embedding method 

for eq. (1). 

Up to this point, to the best of our knowledge, there has been no mention of this 

problem (1). The valuable contributions of this paper are described in detail as follows.  
– The first result is to prove the existence of local solutions. The main tool is Banach fixed 

point theorem.  

– The second major contribution is the proof that the solution of the problem (1) converges 

to the solution of the classical heat equation. 

The first result is about the existence and unique local solution. The second result is 

related to the convergence of the solution when the parameter k approaches 0. 

Preliminaries 

For each number 0s  , we define the following space: 
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By a simple calculation, we get the following ODE with Riemann-Liouville: 
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Then we get the following identity: 
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where  
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Definition 1 The function w is called a mild solution of problem (1) if it satisfies: 
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Lemma 1 Let f be the function in ( )m
. Then: 
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for any 0 < <1.  

Proof. Parseval’s equality and the inequality 
ze C z 


   for any > 0  allow us to 

confirm: 
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This inequality gives the desired result. 

Theorem 1 The function F satisfies the globally Lipschitz condition: 
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Let 
0 )mw D (  and   be as 0 < < min(1,2 )  . Then problem (1) has a local 

existence [0, ; ( )]m
du L T  where: 

 < < min(1,2 )d   

Proof. Let us define the following function: 
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We first give the following estimate: 
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Let u, v be two functions which belong to the space ( )m
. We need to give the 

estimation for 1 1 ( )
.mu v  Indeed, by a simple caculation, we find: 
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Multiplying the two sides of the previous inequality by td, we get the following 

estimate:  
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where we note that <1  and <1d . The right hand side of (12) is independent of t, so we 

deduce: 
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In the following, we continue to show the estimation of 2 2 [0, ; ( )]mL T
d

u v  . By 

a similar previous argumen, we get: 
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It is easy to see that: 
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Combining eqs. (14) and (15), we deduce: 
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Hence, noting that 2   , we find: 
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The right hand side of (17) is independent of t, so we deduce: 
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Combining eqs. (13) and (18), we obtain: 
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By choosing T small enough, we can immediately see that  is a contraction operator 

in space [0, ; ( )]m
dL T . By applying Banach fixed point theorem, we can deduce that  has 

a fixed point [0, ; ( )]m
du L T . So, problem (1) has a unique solution in the space 

[0, ; ( )]m
dL T . 

Theorem 2 Let u(k) be the solution of: 
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 and u* be the solution of the following classical heat problem: 
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Let us assume that 0 ( )m hw H   and *( ) [0, ; ( )]m hF u L T H  . Then for T 

enough small then the following estimate holds: 
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where 0 < < <1h   and 1> > .d h   
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for any 2( )f L . The function u* is defined by: 
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Hence, we find: 
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Combining eqs. (25), (29), (30), and (31), we get: 
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Combining (32) and (33) and after some rearrangement, we can get the desired result. 

References 

[1] Hristov, J., A Note on the Integral Approach to Non-Linear Heat Conduction with Jeffrey’s Fading 
Memory, Thermal Science, 17 (2013), 3 , pp. 733-737 

[2] Hristov, J., An Approximate Analytical (Integral-Balance) Solution to a Nonlinear Heat Diffusion 
Equation, Thermal Science, 19 (2015), 2, pp. 723-733 

[3] Baleanu, D., et al., A Fractional Derivative with Two Singular Kernels and Application to a Heat 
Conduction Problem, Adv. Difference Equ., 252 (2020), 252, pp. 1-19 

[4] Hajipour, M., et al., Positivity-Preserving Sixth-Order Implicit Finite Difference Weighted Essentially 
Non-Oscillatory Scheme for the Nonlinear Heat Equation, Appl. Math. Comput., 325 (2018), 1 , pp. 146-
158 

[5] Conti, M, Marchini, M. E., A Remark on Non-classical Diffusion Equations with Memory, Appl. Math. 
Optim., 73 (2016), 1, pp. 1-21 

[6] Wang, X, Zhong, C., Attractors for the Non-Autonomous Non-Classical Diffusion Equations with Fading 
Memory, Nonlinear Anal., 71 (2009), 11, pp. 5733-5746 

[7] Aifantis, E. C., On the Problem of Diffusion in Solids, Acta Mech., 37 (1980), 3, pp. 265-296 
[8] Ting, T. W., Certain Non-Steady Flows of Second Order Fluids, Arch. Rational Mech. Anal., 14 (1963), 

1, pp. 1-26 
[9] Inc, M., et al., Modelling Heat and Mass Transfer Phenomena New Trends in Analytical and Numerical 

Methods, Thermal Science, 23 (2019), 6, pp. SIX 

 

 

 

Paper submitted: March 2, 2021 © 2021 Society of Thermal Engineers of Serbia.  
Paper revised: March 25, 2021 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: April 2, 2021 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

http://www.vin.bg.ac.rs/index.php/en/

