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In this research article, the constant proportional Caputo approach of fractional
derivative is applied to derive the generalized thermal and molecular profiles for
flow of second grade fluid over a vertical plate. The governing equations of the
prescribed flow model are reduced to dimensionless form and then solved for tem-
perature, concentration, and velocity via Laplace transform. Further graphs of
field variables are sketched for parameter of interest. Comparison between present
result and the existing results is also presented graphically.
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Introduction

The fractional calculus is the study of differential operators of the arbitrary order and
become a potent too to describe the viscoelastic behavior of the fluids. There are several ap-
proaches of fractional differentiation but the most important are Caputo, Caputo-Fabrizio, and
constant proportional Caputo (CPC) approaches [1-8]. Hristov [9] investigated the results for
transient flow of a non-Newtonian fluid with time space derivative. Hristov [10] discussed the
transient heat diffusion with a non-singular fading memory by Cattaneo constitutive equation
with Caputo-Fabrizio time fractional derivative. In this research our aims is to find results for
second grade fluid flow for generalized thermal and molecular diffusion by applying the CPC
fractional derivative [2]. The governing equations of flow model are solve analytically with
help of Laplace transform.

Mathematical formulation

Let us consider a flow of an incompressible second grade fluid past a flat surface by
subject to the Newtonian heating and constant concentration level at boundary. The flat surface,
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Figure 1. Flow geometry and co-ordinate lowing PDE [9-11]:
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where J is the heat flux, and is given by following classical Fourier’s law:
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where k is the classical thermal conductivity:
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where q is the molecular flux, and is given by following classical Fick’s law:
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where D is the classical molecular diffusion. Relevant initial and boundary conditions:
u@,0=0 T(50)=Ty C(5.0=Cp &20 (6)
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Modeling with constant proportional
Caputo fractional derivative

To obtain the geometry free model, the following dimensionless relations:
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are introduced to eqg. (1), and obtain the following non-dimensional momentum balance:
d Q2U(Et) | d%u(&Et)
—|u(é,t)— | = 2 +GrT(&,1)+GmC(&,1), t,E>0 (10)
a{ (E)— 1 o o (&.1) &0 g

where Gr= T, is thermal Grashof number, Gm= f,C, is mass Grashof number and
w2 = [(ua/9)/(v%p)](k/h) is the dimensionless material parameter for second grade fluid.
Fractional thermal diffusion

Thermal conservation is stated:

oCo aTéf't) =—2—2, £1>0 (11)

where J is the thermal flux and Cp — the specific heat of fluid at constant pressure. The gener-
alized thermal flux is stated by fractional form of Fourier’s law [10, 11]:

J=-kepf (%], Et>0 (12)

Plugging the eq. (12) into eq. (11) and using the dimensionless relation from eq. (11)
we obtain:

o TED _ crepy ﬂ{azT (&)

ot t ag2 :|' g’t>0 (13)

Fractional molecular diffusion
Molecular conservation is stated:

N _ og

- . Et>0 (14)

where q is the molecular flux. The generalized molecular flux is stated by fractional form of
Fick’s law [11]:

q:_DCPCDt}/ [%j’ é:’t>0 (15)

Plugging the eq. (15) into eq. (14) and using the dimensionless relation from eq. (11)
we obtain:
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Associated dimensionless conditions are:
u(£,0)=0, T(£0)=0, C(£0)=0, &£>0 a7
u(0,t) =0, aT(g?t) beo=—TOD+1], COH=1 t>0 (18)
u,t)—>0, T ) >0, CEt)—0, as o (19)

Solution of problem

The governing egs. (10), (13), and (16) of flow model are solved subject to the condi-
tions stated in egs. (17)-(19) via Laplace transform method and after inverting the Laplace
transform the analytical result only for velocity field expressed in terms of series.

Velocity field
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Figure 2. (a) Comparison velocity profile for L1 -0 Lo —»1 and (b) f=y=0.5
Conclusions

Some useful outcomes of this research in the form of application in transport phenom-

ena are the following.

Fractional parameter can be used to control the boundary layer of the fluid properties due
to constants L and Lo appearing in CPC lies between 0 and 1.

For L1— 0; Lo —1, 8 —1,and y — 1, CPC reduces to Caputo and presented in fig. 2(a) it
validate the present and again depicted better decay nature than Caputo-Fabrizio.

New fractional operator constant proportional Caputo present a better memory than Caputo
and Caputo-Fabrizio for different fractional parameter values and presented in figs. 2(a)
and 2(b).
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