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In this research article, the constant proportional Caputo approach of fractional 
derivative is applied to derive the generalized thermal and molecular profiles for 
flow of second grade fluid over a vertical plate. The governing equations of the 
prescribed flow model are reduced to dimensionless form and then solved for tem-
perature, concentration, and velocity via Laplace transform. Further graphs of 
field variables are sketched for parameter of interest. Comparison between present 
result and the existing results is also presented graphically. 
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Introduction 

The fractional calculus is the study of differential operators of the arbitrary order and 

become a potent too to describe the viscoelastic behavior of the fluids. There are several ap-

proaches of fractional differentiation but the most important are Caputo, Caputo-Fabrizio, and 

constant proportional Caputo (CPC) approaches [1-8]. Hristov [9] investigated the results for 

transient flow of a non-Newtonian fluid with time space derivative. Hristov [10] discussed the 

transient heat diffusion with a non-singular fading memory by Cattaneo constitutive equation 

with Caputo-Fabrizio time fractional derivative. In this research our aims is to find results for 

second grade fluid flow for generalized thermal and molecular diffusion by applying the CPC 

fractional derivative [2]. The governing equations of flow model are solve analytically with 

help of Laplace transform. 

Mathematical formulation 

Let us consider a flow of an incompressible second grade fluid past a flat surface by 

subject to the Newtonian heating and constant concentration level at boundary. The flat surface, 
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fig. 1, is oriented in co-ordinates system that the 

y-axis pointed normal to the plane of surface. In-

itially fluid and its boundary was in equilibrium 

with all respect at temperature T0 and at concen-

tration level C0. For t = 0+ heat transfers from 

surface to fluid is proportional to the surface 

temperature T with concentration level Cw and 

consequently fluid flow along the x-axis only un-

der the bouncy effects of temperature and con-

centration gradients.  
The governing equations under Bous-

sinesq’s approximation are reduced to the fol-

lowing PDE [9-11]: 
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where J is the heat flux, and is given by following classical Fourier’s law:
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where k is the classical thermal conductivity: 
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where q is the molecular flux, and is given by following classical Fick’s law: 
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where D is the classical molecular diffusion. Relevant initial and boundary conditions:
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Modeling with constant proportional  

Caputo fractional derivative 

To obtain the geometry free model, the following dimensionless relations: 

 

Figure 1. Flow geometry and co-ordinate 
system 
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are introduced to eq. (1), and obtain the following non-dimensional momentum balance: 

 
2 2

2 2 2

( , ) ( , )
( , ) Gr ( , ) Gm ( , ), , 0

u t u t
u t T t C t t

t

 
    

 

   
     

   
 (10) 

where 1Gr T  is thermal Grashof number, 2Gm oC  is mass Grashof number and  

μ2 = [(μ1/g)/(υ2/ρ)](k/h) is the dimensionless material parameter for second grade fluid.

 
Fractional thermal diffusion 

Thermal conservation is stated: 

 
( , )

, , 0P

T t J
C t

t


 



 
  

 
 (11)

 

where J is the thermal flux and CP – the specific heat of fluid at constant pressure. The gener-

alized thermal flux is stated by fractional form of Fourier’s law [10, 11]: 
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Plugging the eq. (12) into eq. (11) and using the dimensionless relation from eq. (11) 

we obtain: 
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Fractional molecular diffusion 

Molecular conservation is stated: 
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where q is the molecular flux. The generalized molecular flux is stated by fractional form of 

Fick’s law [11]: 
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Plugging the eq. (15) into eq. (14) and using the dimensionless relation from eq. (11) 

we obtain: 
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Associated dimensionless conditions are: 
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Solution of problem 

The governing eqs. (10), (13), and (16) of flow model are solved subject to the condi-

tions stated in eqs. (17)-(19) via Laplace transform method and after inverting the Laplace 

transform the analytical result only for velocity field expressed in terms of series. 

Velocity field 
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Figure 2. (a) Comparison velocity profile for L1 →0 L0 →1 and (b) β = γ = 0.5 

 

Conclusions 

Some useful outcomes of this research in the form of application in transport phenom-

ena are the following. 

– Fractional parameter can be used to control the boundary layer of the fluid properties due 

to constants L1 and L0 appearing in CPC lies between 0 and 1. 

– For L1 ® 0; L0  ®1, β →1, and γ → 1, CPC reduces to Caputo and presented in fig. 2(a) it 

validate the present and again depicted better decay nature than Caputo-Fabrizio. 

– New fractional operator constant proportional Caputo present a better memory than Caputo 

and Caputo-Fabrizio for different fractional parameter values and presented in figs. 2(a) 

and 2(b).  
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