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The paper is concern to the approximate analytical solution of K(2,2) using the 
multistage homotopy asymptotic method which are used in modern physics and 
engineering. The suggested algorithm is an accurate, effective, and simple to-uti-
lize semi-analytic tool for non-linear problems, and in this manner the current in-
vestigation highlights the efficiency and accuracy of the method for the solution of 
non-linear PDE for large time span. Numerical comparison with the variational 
iteration method and with homotopy asymptotic method shows the efficacy and 
accuracy of the proposed method.  
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Introduction 

Non-linear PDE are generally utilized in understanding and modeling of a considera-

ble lot of realism matters show up in applied science and material science. Numerous strategies 

have been developed by the researchers for the non-linear problems wherein the Perturbation 

procedures Cole [1] were the well-known techniques which depended on the existence of large 

or small parameters, to be specific the perturbation quantities. Tragically, numerous non-linear 

problems in physical sciences do not contain such sort of perturbation quantities by any means. 

To overcome such types of difficulties some non-perturbative procedures which are free of 

small parameters are proposed in Adomian [2]. Be that as it may, both perturbative and non-

perturbative strategies could not give a straightforward method to adjust or control the rate and 

region of convergence of approximate series Liao [3]. To defeat this trouble, another analytical 

technique was proposed by [4, 5], known as the optimal homotopy asymptotic method (OHAM) 

which has been effectively employed to numerous non-linear problems in heat transfer and fluid 

mechanics Marinca and Herisanu [4]. 

–––––––––––––– 
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The OHAM is an approximate analytical method which can be used with ease and 

having a built in convergence criteria like to homotopy analysis method (HAM) however with 

more degree of flexibility. Many authors have shown that the suggested procedure is accurate 

and reliable, and calculated the solutions of complex problems which have significant applica-

tions in science and technology, [4, 5]. In view of our observations, the OHAM solution with 

the easiest and simplest auxiliary function of the form Hi(q) for the initial value problems is 

valid for a short time span. Accordingly, to circumvent this limitation, a new modification is 

made which is based on the standard OHAM and called it the multistage homotopy asymptotic 

method (MOAHM) which insure the validity of the approximations of large time in easy way. 

On the other hand, the K(n,n) equation was first appeared in Rosenau et al. [6] which 

is the fundamental equation for compactons. Compactons are characterized as solutions free of 

exponential tails or solutions with finite wavelengths [6] in solitary waves theory. The purpose 

of the current research is to utilized efficiently the MOHAM to find out the approximate 

analytical solutions for the K(2,2) equations.  

Description of MOHAM 

This section is devoted to the basic principles of the OHAM as given in [4, 5]. 

Consider the initial-value problem: 

 [ ( , )] [ ( , )] = 0, =1,2,...,i i i iL U y N U y i N   (1) 

with initial condition as:  

 ( , ) =i iU y    (2) 

where Ui(y, τ) represent the unknown function whereas Li and Ni denote the linear operator, 

non-linear operator, respectively, additionally, y and τ are the independent variables. A 

homotopy map [ ( , , ), ] : [0,1]i ih v y q q R R    which satisfies:  

 ,0(1 ) [ ( , , )] ( ) = ( , ) [ ( , , )] [ ( , , )]i i i i i i iq L v y q U Hi q L v y q N v y q      { } { }  (3) 

can be constructed. Here [0,1]q  and ,y R   where ( ) 0iH q   is an auxiliary function. The 

Hi(0) = 0 for q = 0, and ( , , )iv y q is an unknown function. It is understood that 

,0( , ,0) = ( )i iv y U   holds for q = 0 and ,0( , ,0) = ( )i iv y U   holds for q = 1. In the same manner 

q changes from 0 to 1, the solution ( , , )iv y q  changes from ,0 ( , )iU y t  to ( , )iU y   where 

,0 ( , )iU y   is the initial guess which is known and calculated from eq. (2) for q = 0:  

 ,0[ ( , )] = 0i iL U y   (4) 

Now, the auxiliary function Hi(q) has been chosen in the following manner: 

 2 3 2 2 3
1, 2, 3, 1, 2, 3,( ) = or ( , ) =i j j j i j j jH q C q C q C q H q C q C q C q         (5) 

where 1, 2, 3,, , ,j j jC C C  denote convergence control parameters (CCP) and can be find out 

later. In order to find the required approximate solution, the Taylor’s series are utilized in the 

accompanying form to expand ( , , , )i kv y q C  about q: 

 0 , 1 2

=1

( , , , ) = ( , ) ( , , , , , ) k
i k i k k

k

v y q C U y U y C C C q  


  (6) 
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Define the vectors: 

 1 2 , ,0 ,1 1 ,C = { , , , },  U = { ( , ), ( , , ), , ( , ,C )}i i i s i i i s sC C C U y U y C U y    

where =1,2,3, ,s  setting eq. (6) into eq. (3) and to the linear equations which are given 

below, we proceed by comparing coefficient q, Also, the zeroth-order problem is given by eq. 

(4) whereas the first- and second-order problems are:  

 ,1 1 0 ,0 ,1[ ( , )] = (U ), ( ) = 0, andi i i iL U y C N U a  (7) 

 ,2 ,1 2 ,0 ,0 1, ,1 ,1 ,1 ,2[ ( , )] [ ( )] = (U ) [ ( , )] (U ) , ( ) = 0i i i i i i j i i i i iL U y L U C N C L U y N U a    { }  

The general equations for , ( )i kU   are:  

 
1

, , 1 , ,0 ,0 , ,

=1

[ ( , )] [ ( , )] = [ ( )] [ ( , )]
k

i i k i i k k j i i i m i i k m

m

L U y L U y C N U C L U y   


    {  

 ,1 , 1 ,(U ) , ( ) = 0i i k i kN U a }  (8) 

where = 2,3,k  and , 0 ,1 ,[ ( , ), ( , ), , ( , )]i m i i mN U y U y U y    is the coefficient of qm in the 

expansion of [ ( , , )]i iN v y q  about q which is known as embedding parameter:  

 ,0 ,0 , ,

=1

[ ( , , )] = [ ( , )] (U ) m
i i i i i m i m

m

N v y q N U y N q 


  (9) 

As it is notice that the convergence of the series given in eq. (9) heavily depends on 

the convergence control parameters 1 2 3, , , ,C C C  if it is convergent at q = 1, then:  

 ,0 1 2

=1

( , , ) = ( ) ( , , , , , ).i k i k k

k

v y C U U y C C C  


  (10) 

The result of the mth-order approximation is: 

 1 2 3 ,0 1 2

=1

( , , , , , , ) = ( , ) ( , , , , , )k y k k

k

U y C C C C U y U y C C C  


  (11) 

Substituting eq. (11) into eq. (1) gives the accompanying residual: 

 1, 2, 3, , 1, 2, 3, ,( , , , , ,..., ) = [ ( , , , , ,..., )]i j j j m j i j j j m jR y C C C C L U y C C C C    

 1, 2, 3, ,[ ( , , , , ,..., )]i j j j m jN U y C C C C  (12) 

where ( , )U y   will represent the exact solution when = 0.iR  It is noticed that such a case will 

not happen for non-linear problems, yet we can limit the function:  

 2
1, 2, 3, , 1, 2, 3, ,( , , ,..., ) = ( , , , , ,..., )d

j h

j

i j j j m j i j j j m jJ C C C C R y C C C C





 


  (13) 



Ali Shah, N
 

 

where the length and the number of subintervals 1( , )j j    is denoted by h and N = T/h, 

respectively. Next, changing the initial approximation in each subinterval from the previous 

one, we can solve eq. (13) at = 0,1, , .j N  For instant, we define = ( )jU   in the subinterval 

1( , ).j j    The unknown convergence control parameters Ci, j(i = 1, 2, 3, m, j = 1, 2, N) can be 

determined from the solution of the below given system of equations:  

 
1, 2, ,

= = = = 0
j j m j

J J J

C C C

  

  
 (14) 

and hence, the approximate analytic solution will be:  

 

1 0 1

2 1 2

1

( , ), <

( , ), <
( , ) =

( , ), <N N

U y

U y
U y

U y T

   

   


  







 

 (15) 

Proceeding with thusly, we effectively calculate the initial value problems’ solution 

analytically for large value of T. It merits referencing that the MOHAM convert to the standard 

OHAM when j = 0 It is also essential to mention that MOHM gives an easy way to adjust and 

control the convergence region by means of the auxiliary function Hi(q) involving many CCP 

Ci,j’s. Then again, the proposed method overcomes the main difficulty, due to the large 

computational domain, in calculating the solution of problems.  

Implementation of proposed scheme 

The suggested MOHAM is implemented in the section to the K(2,2) equation to show 

the effectiveness and validity of the algorithm, furthermore, the initial-boundary conditions can 

be computed easily in accordance to the exact solution throughout the paper.  

Test Problem 1. Now, we consider an important equation, namely K(2,2) [7]: 

 2 2( ) ( ) = 0y yyyu u u    (16) 

with analytical/exact solution ( , ) = /(1 2 ).u y y   

To solve the problem (16), we select the linear and non-linear operators: 

 2 2[ ( , , )] = ( , , ), [ ( , , )] = ( , , ) ( , , )yy yyyL u y q u y q N u y q u y q u y q      (17) 

The auxiliary function Hi(q) is taken in the form 2
1, 2,( ) = ( )i j jH q C q C q  where 

1, 2,,j jC C  are unknown to be computed. Using the producer as described in section Description 
of MOHAM by taking step-size h = 0.1 and starting with 0 = 0  to 10 = =1.T  Various order 

initial value problems and their solutions as follows. 

The 0th order problem:  

 0
0= , ( ,0) =

u
y u y y






 (18) 
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Their solution:  

 0 ( , ) =u y y y   (19) 

The 1st order problem:  

 
2 3 2

0 0 0 01
1, 1, 1, 13

= , ( ,0) = 0j j j

u u u uu
C C C y u y

y y  

   
   

    
 (20) 

with solution:  

 2 3
1 1, 1,

1
( , , ) = (9 6 2 )

3
j ju y C C y      (21) 

The 2nd order problem:  

 
2 3 2

0 0 02 1
2, 1, 2, 2, 3

= (1 )j j j j

u u uu u
C C C C

y y  

   
    

    
 

 
3 3

0 01 1
1, 1, 23 3

2 2 , ( ,0) = 0j j

u uu u
C C u y

y y y y

  
 

   
 (22) 

Their solution:  

 2 2 2 2 3 2 4
2 1, 2, 1, 1, 1, 1,

1
( , , , ) = (45 50 20 4

15
j j j j j ju y C C C C C C          

 2 2
1, 1, 2, 1, 1,45 45 45 30 30j j j j jC y C y C y C y C y        

 2 2 2 2
2, 1, 1, 2,30 10 10 10 )j j j jC y C y C y C y        (23) 

Hence, second order MOHAM solution for the first subinterval can be obtain from:  

 1, 2, 0 1 1, 2 1, 2,( , , , ) = ( , ) ( , , ) ( , , , )j j j j ju y C C u y u y C u y C C      (24) 

which is:  

 2 3 2 2 2
1, 2, 1, 1, 1,

1 1
( , , , ) = (9 6 2 ) (45 50

3 15
j j j j ju y C C y y C y C C               

 2 3 2 4 2
1, 1, 1, 1, 2, 1,20 4 45 45 45 30j j j j j jC C C y C y C y C y          

 2 2 2 2 2
1, 2, 1, 1, 2,30 30 10 10 10 )j j j j jC y C y C y C y C y          (25) 

Following the procedure given in [8], we obtain the values of the CCP which are 

tabulated in tab. 1. These values are used in eq. (25) to get second order MOHAM solution of 

eq. (16) in the first subinterval. Similar procedure is adopted for the remaining subintervals.  
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Table 1. The CCP Ci,j for Test Problem 1 

A comparison between the solution obtained from second-order MOHAM in term of 

the absolute error with nine iterations of VIM and with 8th order HAM for various times are 

tabulated in tab. 2. Table 2 shows that the absolute errors obtained from nine iterations solution 

of VIM and 8th order solution of HAM grow faster for large time span. On the other hand 

MOHAM has retained its accuracy evev for large time span. Thus MOHAM is more better than 

VIM and HAM.  

Table 2. Results of the second order MOHAM for Test Problem 1 

Conclusion 

In this paper, the MOHAM is used to obtain the analytical approximate solutions of 

the K(2,2) equation. The comparison between the proposed MOHAM and VIM was made for 

j  C1,j C2,j 

1  0 –0.8309351103910446  

2 4.7685619794052564 ´ 10–15 –0.8545224795933848  

3 0 –0.8723413872225191  

4  0 –0.8862792717229484  

5  0 –0.8974795903194425  

6  0 –0.9066763731169916  

7  0 –0.9143626709484041  

8  0 –0.9208820232404521  

9 –1.5934646181046106  –0.3926955845326988  

10  0 –0.9327887884711599  

τ y Exact 
MOHAM  

(present method) 
Absolute error 

(MOHAM) 
Absolute error  

(VIM) 
Absolute error  

(HAM) 

0 0 0 0 0 0 0 

0.1 0.1 0.071428 0.071465 3.7 · 10–5 1.8 · 10–9 4.3 · 10–8 

0.2 0.2 0.142857 0.142932 7.4 · 10–5 5.6 · 10–6 3.7 · 10–5 

0.3 0.3 0.187500 0.187640 1.4 · 10–4 6.8 · 10–4 1.9 · 10–3 

0.4 0.4 0.222222 0.222428 2.1 · 10–4 1.9 · 10–2 2.9 · 10–2 

0.5 0.5 0.250000 0.250266 2.7 · 10–4 2.5 · 10–1 2.5 · 10–1 

0.6 0.6 0.272727 0.273047 3.2 · 10–4 2.1 · 1000 1.4 · 1000 

0.7 0.7 0.291667 0.292033 3.7 · 10–4 1.2 · 1001 6.0 · 1000 

0.8 0.8 0.307692 0.308099 4.1 · 10–4 5.4 · 1001 2.1 · 1001 

0.9 0.9 0.321429 0.321882 4.5 · 10–4 2.1 · 1002 6.4 · 1001 

1.0 1.0 0.333333 0.333561 2.3 · 10–4 6.8 · 1003 7.1 · 1001 
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the K(2,2) equation and in light of approximate results, it was found that MOHAM is more 

effective than VIM. One of the beauty of the MOHAM is easy and straightforward calculations 

and secondly, the reduction in the size of computational domain. Additionally, the suggested 

method gives a helpful way of controlling the convergence region of the series solution. 

Accomplished results demonstrate that MOHAM is a accurate and efficient for calculating 

approximate analytical solution of the partial differential equations which utilized scientific 

material science and engineering. 

Acknowledgment 

The Authors extend their thanks to the Deanship of Scientific Research at King Khalid 

University for funding this work. 

References  

[1] Cole, J. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company, Waltham, 
Mass., USA, 1968 

[2] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic 
Publishers, Boston, Mass., USA, 1994 

[3]  Liao, S. J., On the Homotopy Analysis Method for Non-linear Problems, Appl. Math. Comput., 147 
(2004), 2, pp. 499-513 

[4] Marinca, V., Herisanu, N., Application of Optimal Homotopy Asymptotic Method for Solving Non-linear 
Equations Arising in Heat Transfer, Int. Commun. Heat Mass Transf., 35 (2008), 6, pp. 710-715 

[5] Marinca, V., et al. An Optimal Homotopy Asymptotic Method Applied to the Steady Flow of a Fourth-
Grade Fluid Past a Porous Plate, Appl. Math. Lett., 22 (2009), 2, pp. 245-251 

[6] Rosenau, P., Hyman, J. M., Compactons: Solitons with Finite Wavelengths, Phys. Rev. Lett., 70 (1993), 
5, pp. 564-567 

[7] Alomari, A. K., et al. The Homotopy Analysis Method for the Exact Solutions of the K(2,2), Burgers’ and 
Coupled Burgers Equations, Appl. Math. Sci., 2 (2008), 40, pp. 1963-1977 

[8] Shah, N. A., et al. Multistage Optimal Homotopy Asymptotic Method for the Non-linear Riccati Ordinary 
Differential Equation in Non-linear Physics, Appl. Math. Inf. Sci. (AMIS), 14 (2020), 6, pp. 1-7 

  

 
 
 

 

 
 

 

 

Paper submitted: March 5, 2021 © 2021 Society of Thermal Engineers of Serbia.  
Paper revised: March 26, 2021 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: April 5, 2021 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

http://www.vin.bg.ac.rs/index.php/en/

