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In this article, we have considered Wick-type stochastic Korteweg de Vries (KdV) 
equation with conformable derivatives. By the help of white noise analysis, Hermit 
transform and extended G′/G- expansion method, we have obtained exact 
travelling wave solutions of KdV equation with conformable derivatives. We have 
applied the inverse Hermit transform for stochastic soliton solutions and then we 
have shown how stochastic solutions can be presented as Brownian motion 
functional solutions by an application example. 
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Introduction 

Let us consider the Wick-type stochastic KdV equation with conformable derivatives 

in the form: 

 3D ( ) D ( ) D = 0t x xQ U t Q Q V t Q        (1) 

which is a perturbation of the KdV equation with conformable derivatives of the form: 

 3D ( ) D ( )D = 0t x xq u t q q v t q     (2) 

where u and v are non-zero integrable function on ℝ+. In eq. (1), ◊ denotes the Wick product on 

the Kondratiev distribution space (S)–1, U(t), and V(t) are (S)–1-valued functions. Please see [1] 

for more details about stochastic Kondratiev spaces and Wick product. 

In recent years, stochastic non-linear PDE have drawn great interest in many fields. 

The exact solutions of the stochastic non-linear PDE reveal the internal mechanism of physical 

events. However solving stochastic equations is more complicated by virtue of the additional 

random terms when compared to deterministic equations. Wadati [2] firstly introduced and 
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studied the stochastic partial differential KdV equation and obtained deformation of the soliton 

during the propagation in the white noise environment. Liu [3] found general formal solutions 

of Jacobi elliptic function for stochastic non-linear KdV equation, Liu et al. [4] obtained three 

types of exact solutions to generalized stochastic KdV equation using Riccati equation mapping 

method. There are also other studies on various stochastic wave equations [5-7]. 

In this work, we consider eq. (1) in a white noise environment, namely we will deal 

with the Wick-type stochastic KdV equation.  

Exact solutions of eq. (1) 

Using the Hermit transform for eq. (1), (please see [1] for details about Hermit trans-

forms) we acquire the deterministic equation: 

 3D ( , , ) ( , ) ( , , )D ( , , ) ( , )D ( , , ) = 0t x xQ x t z U t z Q x t z Q x t z V t z Q x t z     (3) 

where z = (z1, z2,…) Î(ℂ) is a vector parameter. For the sake of simplicity we take 
( , ) ( , ), ( , ) ( , ), and ( , , ) ( , , ).U t z u t z V t z v t z Q x t z q x t z    We use the transformation: 

 
1

0

( , )
= ( ), ( , , ) = d

tx z
q q x t z k w





 
  

  

 
  

 
  (4) 

where k and w are free constants while θ is a non-zero function to be determined. So, eq. (3) 

reduces to following non-linear ordinary differential equation (NODE):  

 
3

3

3

d d d
( , ) ( , ) = 0

d d d

q q q
w ku t z q k v t z

  
   (5) 

The solution of NODE (5) can be given by a polynomial in (G´/G): 

 0

=1

( ) = ( , ) ( , ) ( , )

i in

i i
i

G G
q a t z a t z b t z

G G



    

    
   

  (6) 

where 0 , , ( =1,2,..., )i ia a b i n  are functions to be determined later. The = ( )G G   satisfies the 

second order linear differential equation in the form: 

 = 0G G G     (7) 

where λ and µ are arbitrary constants. From the balancing between (d /d )q q   and 3 3d /dq   

appearing in NODE (5), we obtain the positive integer n = 2. Then solution of eq. (1) can be 

written in the form: 

 

2 1 2

0 1 2 1 2( ) = ( , ) ( , ) ( , ) ( , ) ( , )
G G G G

q a t z a t z a t z b t z b t z
G G G G



 
          

          
       

 (8) 

Substituting eqs. (7) and (8) into eq. (5), collecting all terms with the same power of 

(G´/G) and setting each coefficient to zero, we have the following solution sets. 
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Case 1  

 
2 2

1 2 1

12 ( , ) 12 ( , )
( , ) = , ( , ) = , ( , ) = 0

( , ) ( , )

k v t z k v t z
a t z a t z b t z

u t z u t z


   

 2 0 0 1( , ) = 0, ( , ) = ( , ), ( , ) 0b t z a t z a t z a t z w   

 
3 2 3

0 ( , ) ( , ) ( , ) 8 ( , )
( , ) ( , ) 0, =

a t z ku t z k v t z k v t z
ku t z v t z

w

 


 
   

Case 2  

 
2

1 2 1

12 ( , )
( , ) = 0, ( , ) = 0, 0, ( , ) =

( , )

k v t z
a t z a t z u b t z

u t z


   

 
2 2

2 0 0

12 ( , )
( , ) = , ( , ) = ( , ), 0, 0

( , )

k v t z
b t z a t z a t z w

u t z


    

 
3 2 3

0 ( , ) ( , ) ( , ) 8 ( , )
( , ) 0, =

a t z ku t z k v t z k v t z
kq t z

w

 
 

 
   

The values in the previous cases are substituted in eq. (8) and if the solutions of second 

order linear ordinary differential eq. (7) are used, soliton solutions of eq. (5) are obtained as 

following. 

For case 1: 

When 2 4 > 0,   the hyperbolic function travelling wave solution is obtained: 

 

2

2 2
2 2

1 0

( )( )( 4 )
4

3 ( , )
( , , ) = 4 4

( , ) cosh sinh
2 2

A B A B
k v t z

q x t z a
u t z B A

 


   
 

   
 

        
     

          

 (9) 

When 2 4 < 0,  we acquire the following trigonometric function travelling wave 

solution: 

 

2 2 2

2 2
2 2

2 0

( )( 4 )
4

3 ( , )
( , , ) = 4 4

( , ) cos sin
2 2

A B
k v t z

q x t z a
u t z A B

 


   
 

  
 

        
     

          

 (10) 

When 2 4 = 0,   we get following rational solution: 

 
2 2 2 2

3 0 2

3 ( , )[ 4 ( ) ]
( , , ) =

( , )( )

k v t z A A B
q x t z a

u t z A B

 



  



 (11) 

where A and B are arbitrary constants and: 
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3 2 3

0

1
0

( , ) ( , ) 8 ( , )
= d

t a ku z k v z k v zx
k





    
 

  

   
  

 
  (12) 

in equations (9)-(11). 

For case 2:  

When 2 4 > 0:    

 
2

4 0
2 2 2

24 ( , ) 2
( , , ) =

( , ) [ 4 ( , )] 4 ( , )

k v t z
q x t z a

u t z x t x t

  

     

  
  

        

 (13) 

where 

 
2 2

( , ) =

4 4
coth tanh

2 2

B A
x t

A B B A
   

 

 
    
    
   
   

 (14) 

When 2 4 < 0:    

 
2

225 0 2

1 2
24 ( , )

( , , ) = 4 ( , ) 4 ( , )( , )

k v t z
q x t z a x t x tu t z




     

 
 

            

 (15) 

where 

 

2 2

2 2

4 4
cos sin

2 2
( , ) =

4 4
cos sin

2 2

B A

x t

A B

   
 

   
 

    
   
   
   


    
   
   
   

 (16) 

When 2 4 = 0:    

 
2

6 0 2

24 ( , ) ( )[ 2 ( 2 )]
( , , ) =

( , )[ 2 ( )]

k v t z A B A A
q x t z a

u t z A A B

    

 

   


  
 (17) 

where in (14), (16), and (17),   is as given in (11). 

Exact stochastic solutions of eq. (1)  

In this part, we have used the Theorem 4.1.1 from Holden et al. [1]. By applying the 

inverse Hermite transform to the above solutions we have exact stochastic hyperbolic, 

trigonometric and rational solutions of eq. (1) respectively: 

 

2

2 2
2 2

1 0

( )( )( 4 )
4

3 ( )
( , ) = 4 4

( ) cosh sinh
2 2

A B A B
k V t

Q x t a
U t B A

 


   
 



 

   
 

        
     

          

 (18) 
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2 2 2

2 2
2 2

2 0

( )( 4 )
4

3 ( )
( , ) = 4 4

( ) cos sin
2 2

A B
k V t

Q x t a
U t A B

 


   
 



 

  
 

        
     

          

 (19) 

 
2 2 2 2

3 0 2

3 ( ) [ 4 ( ) ]
( , ) =

( ) ( )

k V t A A B
Q x t a

U t A B

 







   


 
 (20) 

where 

 
3 2 3

0

1
0

( ) ( ) 8 ( )
= d

t a kU k V k Vx
k





    
 

  

   
  

 
  (21) 

in eqs. (18)-(20).  

 
2

4 0
2 2 2

24 ( ) 2
( , ) =

( ) [ 4 ( , )] 4 ( , )

k V t
Q x t a

U t x t x t

  

     

  
   

        

 (22) 

where 

 
2 2

( , ) =

4 4
coth tanh

2 2

B A
x t

A B B A
   

  

 
    
    
   
   

 (23) 

 
2

225 0 2

1 2
24 ( )

( , ) = 4 ( , ) 4 ( , )( )

k V t
Q x t a x t x tU t




     


 
 

            

 (24) 

where 

 

2 2

2 2

4 4
cos sin

2 2
( , ) =

4 4
cos sin

2 2

B A

x t

A B

   
 

   
 

 

 

    
   
   
   


    
   
   
   

 (25) 

 
2

6 0 2

24 ( ) ( )[ 2 ( 2 )]
( , ) =

( ) [ 2 ( )]

k V t A B A A
Q x t a

U t A A B

    

  

    


   
 (26) 

in eqs. (23), (25), and (26), ξ is as given in (21). 

Example 

Assume that = 1,  ( ) = ( ),V t U t  and ( ) = ( ) ,tU t f t W  where   and   are free 

constants, ( )f t  is bounded or integrable function on R+ and Wt is the Gaussian white noise that 

satisfies Wt = Bt, Bt is a Brownian motion. The Hermit transform of Wt is given by 
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1 0
( ) ( ) .

t
it i iW z z d  
    Using the definiton of ( )tW z  we get following white noise functional 

solutions. 

 
1

2

2
2 2 2

0

( )( )( 4 )
4

( , ) 3 4 4
cosh sinh

2 2

B

A B A B

Q x t a k
B A

 


    
 

   
 

         
     

          

 (27) 

 
2

2 2 2

2
2 2 2

( )( 4 )
4

( , ) 3 4 40 cos sin
2 2

B

A B

Q x t a k
A B

 


    
 

  
 

         
     

          

 (28) 

 
3

2 2
2 2

0 2

12
( , ) 3

( )B

k A
Q x t a k

A B





  


 (29) 

where 

 
2

3 2 3
0

0

( 8 ) ( )d
2

t t
kx a k k k f Bt     

  
        

   
  (30) 

in eqs. (27)-(29). 

 
4

2 2 20 2

2

( , ) 24 4 ( , )4 ( , )B
Q x t a k x tx t

 

     

 
 

              

 (31) 

where 

 
2 2

( , )

4 4
coth tanh

2 2

B A
x t

A B B A
   

 

  
    
    
   
   

 (32) 

 
5

2 220 2

1 2

( , ) 24 4 ( , ) 4 ( , )B
Q x t a k x t x t



      

 
           

   

 (33) 

where 

 

2 2

2 2

4 4
cos sin

2 2
( , )

4 4
cos sin

2 2

B A

x t

A B

   
 

   
 

    
   
   
   

 
    
   
   
   

 (34) 
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2

0 2
6

24 [ ( ) ]( )[ 2 ( 2 )]
( , )

[ ( ) ][ 2 ( )]B
t

k f t W A B A AtQ x t a
f t W A A B

     

  

    
 

   
 (35) 

in eqs. (32), (34), and (35), ξ is as given in (30). 

Conclusion 

In this study, we have constructed the exact solutions of stochastic non-linear partial 

differential KdV equation with conformable derivative driven by Gaussian white noise. With 

the help of Hermit transform Wick products converted to the ordinary products and eventually 

the Wick-type stochastic equation reduced into the deterministic model. We have used the ex-

tended G′/G-expansion method for determining various exact soliton solutions. Then by apply-

ing the inverse Hermite transform to these obtained solutions we have acquired exact stochastic 

hyperbolic, trigonometric and rational solutions of eq. (1). Additionally we have demonstrated 

how the obtained stochastic solutions are presented as Brownian motion functions solutions 

giving an example.  
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