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Even though, it is mostly used by process control engineers, the temperature con-
trol remains an important task for researchers. This paper addressed two sepa-
rate issues concerning model optimization and control. Firstly, the linear models 
for the three different operating points of the heat flow system were found. From 
these identified models a Takagi-Sugeno model is obtained using fixed membership 
functions in the premises of the rules. According to the chosen objective function, 
parameters in the premise part of Takagi-Sugeno fuzzy model were optimized using 
the grey wolf algorithm. Furthermore, by using the parallel distributed compen-
sation a fuzzy controller is developed via the fuzzy blending of three proportional 
+ sum controllers designed for each of the operating points. In order to evaluate 
performance, a comparison is made between the fuzzy controller and local linear 
controllers. Moreover, the fuzzy controllers from the optimized and initial Taka-
gi-Sugeno plant models are compared. The experimental results on a heat flow 
platform are presented to validate efficiency of the proposed method.
Key words: temperature control, grey wolf optimization algorithm,  

parallel distributed compensation, fuzzy control,  
Takagi-Sugeno, discrete-time systems

Introduction

The temperature control has an extensive range of applications in petrochemical, bio-
chemical and pharmaceutical industries. Modelling and control of the heat flow experiment 
(HFE), which is the plant in this research as well, was done in papers [1-3]. The proposed method 
in [1] is based on a set of frequency-domain data to design fixed-order controllers capable of 
providing satisfactory performance profiles and constrained control inputs. The design problem is 
formulated as a constrained optimization problem, which has been solved using the genetic algo-
rithm (GA) to find suitable parameter values of a selected controller to achieve satisfactory change 
in temperature. Ionesi et al. [2] examines the on-line implementation of the modulating function 
method, for parameter and state estimation, for the model of an air-handling unit, central element 
of HVAC systems. In [3] authors have conveyed and stressed the issue of performance analysis of 
fractional-order controller designs for integer first-order plus time delay systems. 

In this paper, fuzzy control based on Takagi-Sugeno (TS) fuzzy model is applied. 
The fuzzy model proposed by Takagi and Sugeno [4] is described by fuzzy IF-THEN rules 
which depict local linear input-output relations of a non-linear system. Fuzzy logic has many 
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varieties that can be implemented for control purposes. For instance, one of them is the parallel 
distributed compensation (PDC). Sadeghi et al. [5], a fuzzy controller is constructed based on a 
PDC method and it is implemented in an experimental tank level control system. Yordanova [6] 
suggests a procedure used to make two-variable fuzzy logic controllers. In [7] a novel modifi-
cation the original PDC method is submitted, so that, besides the stability issue, the closed-loop 
performance of the system can be considered at the design stage. On the other hand, Taniguchi 
et al. [8], gave a unified approach to a non-linear model following control that contains the 
regulation and servo control problems as distinctive cases.

The fuzzy design can be considered as an optimization problem, where the structure, 
antecedent, and consequent parameters are required to be identified. Global optimization prob-
lems are difficult to be solved efficiently because of their high non-linearity and multiple local 
optima. Nature has been a major source of inspiration for researchers in the field of optimiza-
tion [9]. Metaheuristic methods as global optimization algorithms can deal with non-convex, 
non-linear, and multimodal problems subjected to linear or non-linear constraints with contin-
uous or discrete decision variables. Numerous papers concerning the TS discrete-time fuzzy 
models are given in the literature such as in [10, 11]. The optimization of TS fuzzy models is to 
determine the structure and parameters of a model. In order to obtain an optimal fuzzy model, 
many nature algorithms have been used. The framework for designing Takagi-Sugeno-Kang 
fuzzy rule-based systems using GA was proposed in [12]. Ilić et al. [13] uses a GA to select 
the best inputs for different multiple linear regression models. A multitude of improved particle 
swarm optimization algorithms are presented in variations of works [14-17]. In combination 
with fuzzy control systems, other techniques such as ant colony [18] and a novel method called 
the cuckoo search [19] can be used.

Grey wolf optimizer (GWO) has proven to be outstanding at resolving a variety 
of modes, multimodal, and problems that are not linear. The foremost supremacies of this 
algorithm, and all metaheuristic algorithms in general, are that it avoids getting stuck in the 
local minimum because of random distribution. The GWO was first suggested by Seyedali 
Mirjalili, Andrew Lewis in their paper [20]. A improved GWO (IGWO) can be used for 
optimization fuzzy aided PID controller [21]. Based on [21] this technique illustrates its su-
premacy with a controller which design has been made for power system frequency control. 
The GWO applied to the optimal tuning of the parameters of TS proportional-integral (PI) 
fuzzy controllers was studied in [22]. In [23] TS model was optimized using whale optimizer 
and PDC based controllers were implemented in order to maintain the desired water level in 
the tank. Also, there are some hybrid controllers which are optimally tuned in a model-based 
manner by a GWO algorithm [24]. In control engineering, there are a significant number of 
publications that investigate the application of GWO in tuning the parameters of different 
type controllers, mostly PID type, both classical and fuzzy. This paper examines and discuss-
es the application of this algorithm in another task: optimization of TS model coupled with 
PDC controller. In general, modelling rule-based TS fuzzy systems consists of two parts: 
structural modelling and parameter optimization. Mostly, the structure and parameters of the 
TS fuzzy models are determined separately, and this is the case in this paper as well. The 
structure, which includes the number of rules and the variables involved in the premise of the 
rules, is determined first, and the parameters are optimized while the structure is fixed. The 
content and key findings of this study are: 

–– An initial TS fuzzy model was built of three linear models that describe the behavior of the 
plant around three nominal points. The membership functions are evenly distributed with 
centers at these nominal points.
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–– The initial TS model was optimized using GWO algorithm in such way that the parameters 
in the premises of the rules have optimal values.

–– Synthesis of PDC control system was done. The experimental data with comparison of 
the responses of the plant controlled by the local PS controller, PDC controller which uses 
initial TS model, as well as PDC controller which uses optimal widths of membership func-
tions, are given.

Takagi-Sugeno fuzzy model

The main idea of the TS fuzzy modelling method is to partition the non-linear system 
dynamics into several locally linearized subsystems, so that the overall non-linear behavior of 
the system could be captured by fuzzy blending of such subsystems. The fuzzy rule associated 
with the i-th linear subsystem, can then be defined as ith rule:

1 1 2 2IF ( ) is ,  and ( ) is ,...,  and ( ) is  THEN
( 1) ( ) ( ),  1, 2,..., , ( ) ( ),  1, 2,...,

i i p ip

i i i

z k M z k M z k M
k A k B k i r k C k i r+ = + = = =x x u y x
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 where x(k)∈ℝn is the state vector, u(k)∈ℝM is the input vector, y(k)∈ℝN is the output vector 
and Ai∈ℝn×n, Bi∈ℝn×M, Ci∈ℝN×n. Here {z1(k), z2(k), …, zp(k)} are some non-linear functions of 
the state variables obtained from the original non-linear equation and Mij(zi) are the degree of 
membership of zi in a fuzzy set Mij. Whenever there is no ambiguity, the discrete time variable k 
in z(k) is dropped. The overall output, using the fuzzy blend of the linear subsystems, will then 
be as follows.
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Parallel distributed compensation

The history of the purported PDC was set in motion with a model-based design pro-
cedure proposed by Kang and Sugeno, [25]. The design procedure was denominated PDC in 
[26]. Nonetheless, the design procedure was improved and the stability of control systems was 
analyzed in [27]. It is stressed that many real (non-linear) systems can be and have been repre-
sented by TS fuzzy models. Furthermore, each control rule is designed from the corresponding 
rule of a TS fuzzy model during the PDC design. As a consequence, the designed fuzzy con-
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troller shares the same fuzzy sets as the fuzzy model in the premise parts. The following fuzzy 
controller for the fuzzy models eq. (1) is designed. Control rule i:

	 IF z1(k) is Mi1, and z2(k) is Mi2,…, and zp(k) is Mip THEN

( ) ( ), 1, 2,...,ik k i r= − =F F x (5)

In the subsequent parts the fuzzy control rules have a linear controller. Instead of the 
state feedback controllers different controllers can be used, for example, output feedback con-
trollers or dynamic output feedback controllers, [28]. Additionally, the overall output signal of 
the fuzzy controller is represented:
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The fuzzy controller design is to determine the local feedback gains Fi in the conse-
quent parts.

The grey wolf optimizer

The grey wolf optimization algorithm mimics the hunting mechanism, as well as the 
social hierarchy of the grey wolves in nature. The leader of the pack is the alpha wolf, his/her 
main obligations are to impose dictatorship and leadership to the other members of the pack. 
Right below the alpha is the beta wolf, though not as wise as the alpha, he/she helps in the 
decision making process and gives feedback to the alpha. The deltas are scouts, who watch the 
boundary of the territory. Finally, there are omegas. Furthermore, all of the wolves are involved 
in the main activity, the hunting of the prey, which consists of many phases the first being the 
tracking, chasing and approaching the prey. The pursuing, encircling and harassing of the prey 
is continued up until the prey is motionless. Once this happens the group attacks. In order to 
provide a mathematical model of the social hierarchy the following solutions are considered: 
the fittest solution set as α; the second best solution set as β; the third best solution set as δ and 
the rest of the solutions are assumed to be ω. Since the optimization and the hunting is guided 
by α, β, and δ, in each iteration, the solutions of α, β, and δ are observed and if there is a better 
one updated, otherwise they remain the same. So as to achieve a mathematical model of the 
encircling behavior, the following equations are ensued [20] (the distance vector and a vector 
to update the position):

( ) ( ) ,  ( 1) ( )p pt t t t= − + = −D CX X X X AD (7)

where A, C, are the coefficient vectors, t is the current iteration, Xp is the position of the prey 
and X is the position vector of the grey wolf/agent. The coefficient vectors are the main reason 
why the GWO is considered to be a stochastic algorithm. Additionally, to mathematically sim-
ulate the hunting behaviour of the grey wolves, an assumption is made that α, β, δ have a finer 
knowledge about the potential location of the prey. In turn, three of the finest solutions that are 
obtained so far are saved and therefore, oblige the other search agents, ω, to update their po-
sition according to the position of the best search agent. All that was formerly mentioned may 
be expressed:
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Simply put, the agents diverge from each other to search for the prey, whilst they 
converge to attack the prey. In closing, this is exactly what emphasizes exploration and allows 
the GWO algorithm to search globally, per say have a broad search [20]. All of this assists the 
GWO to exhibit a more random behavior throughout the optimization process, endorsing ex-
ploration and the local optima avoidance.

System description

The quanser HFE shown in the fig. 1 con-
sists of a chamber equipped with a coil-based 
fan blowing over an electric heating coil. The 
air temperature inside the chamber is measured 
by three temperature sensors positioned equi-
distantly along the duct. Fan speed is measured 
using a tachometer. The fan is operating with a 
constant speed during the whole experiment in 
order to provide uniform air-flow rate through 
the enclosed chamber. We will assume that the 
room temperature is unknown and constant during the experiment because the HFE is located 
in a closed indoor environment and the experiment is conducted on short time interval. In this 
paper, we are interested in designing a controller to control the temperature, T, measured by the 
sensor which is closest to the heater. As modelling of the elements constituting the platform is 
complex to be done, using identification techniques, the plant is approximated by a first-order 
model. In order to identify the mathematical model of the heat flow system, an open-loop ex-
periment is performed.

Takagi-Sugeno modelling
Takagi-Sugeno model based on linearized models (TS-INITIAL)

The local linear models in the consequent rules, eq. (1), are obtained by utilizing the 
methods of identification in accordance with the measured input-output data using MATLAB 
System Identification toolbox. The identification methods were used based on the step response 
of the plant. In this article a non-linear TS model is obtained by combining three linear models 
around three nominal points: 33, 49.4, 68.5 °C. Nominal temperatures TNi, heater nominal volt-
ages VhNi and corresponding identified transfer functions are given in tab. 1.

Table 1. Nominal values and linear models

I TNi [°C] VhNi [V] Gi(z) ai bi

1 33 2
0.0026
0.99977z −

0.99977 0.0026

2 49.4 3.1
0.006939

0.99965z −
0.99965 0.006939

3 68.5 4.2
0.003929

0.99976z −
0.99976 0.003929

Figure 1. The HFE set-up
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Voltage deviation represent control deviations as u(k) = vh(k). The constants for the 
plant’s state space model are determined from tab. 1 based on Gi(z). As example, a procedure 
for determining the constants a1, b1:

1
1

( ) 0.0026( )
( ) 0.99977

T zG z
U z z

= =
−

(10)

( 1) 0.99977 ( ) 0.0026 ( )t k t k u k+ − = (11)
As the state variable the output variable is chosen, x(k) = y(k) = t(k). By substituting 

the state variable into the previous discrete equation, the discrete state equation and the discrete 
output equation of the plant are obtained:

1 1( 1) 0.99977 ( ) 0.0026 ( ) ( ) ( )x k x k u k a x k b u k+ = + = + (12)

( ) ( )y k x k= (13)

 The same was done for the other two discrete equations. Constants for the state space 
plant model are shown in the tab. 1. The following fuzzy model is constructed based on the 
linear subsystems.

Model rule i:
( 1) ( ) ( ),  1, 2,3

IF ( ) is  THEN 
( ) ( )

i i
i

x k a x k b u k i
x k M

y k x k
+ = + =

 =
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Assumed membership functions, which 
are corresponding to the operating points TNi, are 
shown in fig. 2.

Takagi-Sugeno model optimization (TS-OPT)

In order to improve the accuracy of the 
model, the parameters in the premises of the rules 
are optimized using the GWO. In the aim of op-
timization it is necessary to provide experimental 
input-output data. Therefore, in order to cover 
as large a working range as possible, the plant is 
supplied with the input voltage with a shape as Figure 2. Membership functions

Figure 3. Input signal used for model 
optimization	

Figure 4. Optimized membership functions
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depicted in fig. 3. The structure of the fuzzy TS model was fixed, while in the consequents 
of the rules there were local linear models. Furthermore, the model is optimized by changing 
the premise parameters: the width of the membership functions. Moreover, the mentioned TS 
parameters are all coded into one grey wolf, per say one agent, that is presented with a vector 
which contains the premise parameters. The membership function in the center contains two, 
and functions from the ends contain one parameter each, as depicted on fig. 4. That makes a to-
tal of 4 unknown parameters. Parameters for the GWO were taken from the original paper [20], 
while the population is set to 20 and the total number of iterations is set to 30. Furthermore, in 
this optimization method, one agent represents one potential optimal fuzzy model. The sum of 
squared errors (SSE) is taken as an objective function and it can be calculated:

	

2

1

( ) ( )
n

m
i

J y i y i
=

= −  ∑
where y(i) is the measured output of the plant, ym(i) is the output of the model. This is con-
strained optimization task. The lower and upper constraints are determined by the physical 
constraints of the HFE. Also, it was necessary to introduce lower and upper limits so that at 
each individual moment at least one rule is active i.e. to exclude the possibility that in some 
iteration no rule will be active. This would cause 
division by zero and singularities in the TS mod-
el. Optimized membership functions are shown 
on fig. 4 where M3left = 2.19853, M2left = 10.5573,  
M1right = 62.718, and M2right = 67.7686. 

Comparisons of the TS model based on ini-
tial membership functions and the TS model based 
on optimized membership functions with experi-
mental results are shown on fig. 5. The experimen-
tal data shown in fig. 5 are derived after the plant 
is supplied with the input voltage with a shape as 
depicted in fig. 3. The values of the SSE of two 
models, are given as a measure of their accuracy in 
relation the experimentally recorded data 
	 SSETS-INITIAL = 702810, SSETS-OPT = 385910

The SSE, as a measure of performance, has a much lower value, and the matching of experimental 
and simulation results is significantly better in the case of TS-OPT, which can be seen in fig. 5.

Control systems design

The PDC proposes a procedure to design a fuzzy controller from a given TS fuzzy 
model. For each of the linearized models a linear PS controller is defined. The control rule i of 
the fuzzy controller via the PDC is: IF x(k) is Mi, THEN the controller is Ci. The overall output 
signal of the fuzzy controller:
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Figure 5. Comparison of initial and  
optimized TS model 
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where Ci are PS controllers defined in a complex domain as follows. A zero-order PS control 
system is used:
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With that, the expression for the Z transfer function of the controller Ci from the  
eq. (15), was obtained:
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C i

z
+ −
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(19)

A discrete-time controller is constructed indirectly from a continuous design. The 
design is carried out exactly as with continuous systems, the only change due to the digital im-
plementation being the extra step of discretizing the resulting continuous controller. The control 
objective is to maintain the room temperature at the set value by varying the current supply 
to the heating coil. The requirement is that the control systems for all three operating points 
should satisfy the following specifications: the steady-state error should be zero; the percentage 
overshoot has to be less than 5%, the Π ≤ 5%; the settling time should be less than 30 seconds, 
Ts ≤ 30 seconds. Percent overshoot and settling time requirements for the closed-loop system 
responses can be transformed into the desired natural frequency ωn and damping coefficient ζ. 
If the i-th plant model is represented by Gi(s) = βi/(s-αi) [29]:
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Gain values for linear models are obtained: KP1 = 0.93768, KP2 = 0.33312,  
KP3 = 0.61816, KS1 = 0.14357, KS2 = 0.053788, KS3 = 0.095009.

Further experimental results

The evaluation of the synthesized controllers was done by using the following criteria: 
step response, tracking control and disturbance rejection.

Step response

The PDC-OPT controller was compared with the specifically designed PS controller 
(C1) for the nominal Point 57 °C. The linear discrete model of the plant around this nominal 
point is G(z) = 0.01088/(z – 0.9998). Heater nominal voltage is 3.65 V. As to say, that the most 
onerous challenge for the PDC-OPT is precisely this, because that point is the most further from 
the operation points of local linear controllers, which are designed to operate around 33, 49.4, 
and 68.5 °C. The requirements for this local linear PS controller are the same. In the same way 
parameters KP = 0.2256 and KS = 0.0343 were obtained. A juxtapose of the operation of this 
local PS controller with the PDC-OPT is shown in fig. 6. As can be seen in fig. 6 the PDC-OPT 
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achieves a better performance than the local PS controller which can be clearly seen based on 
the value of the SSE, in correlation the set point, which is SSEC1 = 3578, SSEPDC-OPT = 1773. 
The PDC-OPT controller uses the same fuzzy sets M1, M2, and M3 depicted in the fig. 4 as the 
TS fuzzy model of the plant. Based on the fig. 4 and the appearance of the fuzzy sets Mi, it is 
concluded that for the temperature between 54 °C and 60 °C there is the grade of membership 
of the temperature T(k) in the fuzzy set Mi, i.e. Mi(T(k)) ≠ 0, i = 1,2,3. As seen in fig. 6 when the 
temperature changes in the range from 54-60 °C, the first, second and third fuzzy rule will be 
active, in which the fuzzy sets M1, M2, and M3 appear. A smaller overshoot was obtained when 
the plant was controlled using a PDC that contains information about the optimized model 
(TS-OPT), than when the plant was controlled by a PDC with initial membership functions 
(TS-INITIAL). In order for the results to be observed better, the filtered responses are shown 
in fig. 7. The same moving average filter with a span of 30 data points has been used for both 
of the signals. 

     
Figure 6. Comparison of PDC-OPT and PS 
controller around 57 °C  
j

Figure 7. Comparison of PDC with an initial 
and optimized plant model  
j

Comparison of system response percentage overshoots for the initial and optimized 
TS model are shown in tab. 2.

        Table 2. Percentage overshoot for different step responses

Step [℃] 50-52 52-54 54-56 56-58 58-55 55-53 53-51 51-53

TS-INITIAL [%] 38 31.25 34 24 28 34 34 35

TS-OPT [%] 12.5 17 17.5 20 16 17.5 17.5 15

Tracking control

In this section, the intention is to indicate that the PDC with optimized fuzzy sets 
achieves a better behavior of the object compared to the PDC that uses the initial fuzzy sets and 
compared to the local linear controller designed to work around 49.4 °C. A desired trajectory 
that is not too demanding (e.g., slow time-varying sine-like input around 49.4 °C) is used. The 
comparison of tracking responses for the desired trajectory is given in fig. 8. A comparison of 
control signals of TS-INITIAL, TS-OPT and local linear PS controller is given in fig. 9.

Again, the PDC-OPT controller achieved better object behavior than when using a 
local linear controller, as was the case in fig. 6. On the other hand, it can be seen that the local 
linear controller is better than the PDC controller using the TS-INITIAL model. This justifies 
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and gives importance to the optimization done. This improvement can be explicitly seen based 
on the values of the SSE, in correlation the given trajectory, which are SSETS-INITIAL= 6587, 
SSETS-OPT = 1384, and SSEPS = 2602.

Disturbance rejection

In the following section the disturbance rejection problem is being evaluated. In HFE 
the fan speed can be used as an disturbance because it greatly affects the duct temperature. 
Assume that the initial temperature is 56 °C and it is in a steady-state. In the 50th second the 
fan speed is suddenly increased for 5 seconds, which is supposed to imitate a step disturbance. 

Experimental results obtained are presented in 
fig. 10 which shows that the temperature has 
dropped down to about 55.5 °C due to the dis-
turbance introduced, before the implemented 
PDC controllers quickly reacts to reject the dis-
turbance and bring the actual system tempera-
ture to the desired value. Hence, the designed 
PDC has played its role in achieving the de-
sired performance specifications as well as in 
disturbance rejection. In this section, the goal 
was to convey that by optimizing the widths of 
the fuzzy sets an improved behavior of the PDC 
was obtained in comparison the PDC that uses 
the initial fuzzy sets that are common the TS 
fuzzy model and its corresponding controller.

Conclusion

Initially, in this paper, the mathematical model of the heat flow system was obtained 
experimentally. Further, TS fuzzy model was obtained based on three identified local linear 
models. Regardless of the superiority in catching the non-linear behavior of the plant, TS model 
was optimized using GWO. Optimization was implemented only on the unknown parameters 
in the premises of the rules. Moreover, verification was done by comparison of these models. 
Then, by using the PDC method, fuzzy controllers were developed based on initial and opti-
mized TS model. The TS models are improved by GWO which in turn enlarges the efficiency of 

Figure 8. Comparison of PDC with  
the local linear PS controller  

	

Figure 9. Control signals  

Figure 10. Comparison of PDC with an  
initial (TS-INITIAL) and optimized  
(TS-OPT) plant model 
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TS based PDC controller. So, in the synthesis of a fuzzy controller using the PDC technique, the 
developed fuzzy controller’s effectiveness is related to the previously designed system model 
with fuzzy structure. System model with fuzzy structure was created to catch the non-linearity 
in the real object. Finally, tracking control and disturbance rejection problems were evaluated. 
Future research will focus on exploiting these possibilities in terms of using more fuzzy rules 
and metaheuristic algorithms.
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