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In this article, we suggest a new model for the heat-conduction problem by us-
ing the scaling-law vector calculus with Mandelbrot scaling law. The linear and
non-linear scaling-law heat conduction equations are considered as analogues to
the work of Fourier, Laplace, and Burgers. The obtained results are considered
as typical examples to deal with the Mandelbrots scaling-law phenomena in heat
transport system.
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Introduction

The classical theory of the heat conduction has played the important role in the re-
al-world problems [1]. However, there are many anomalous phenomena for the heat conduction
problems. The scaling law behavior of the heat conduction, as one of the important topics for
the anomalous heat transfer, has been studied by many scientists. For example, there exists
many materials with the scaling law behaviors for the heat conduction, such as sheared granular
materials [2], ion traps [3], carbon nanotube materials [4], non-structural materials [5], carbon
nanotubes [60], heterogeneous single-atom catalysts [7], thermal explosion [8], biological media
[9], etc. These results described by the fractal scaling law have been analyzed from the fractal
geometry point of view.

Recently, a scaling-law calculus associated with the Mandelbrots scaling law, which
is connected with the fractal geometry and calculus, was proposed by author in 2020 to scal-
ing-law telegraph equations [10]. Based on it, the fractal scaling-law vector calculus was estab-
lished in 2021 by author, Yang et al. [11] to describe the Mandelbrots scaling-law behavior of
the theory of the elasticity. The heat conduct problem with the Mandelbrots scaling law is an
important topic for us to investigate the heat transport process in the micro-structure with the
Mandelbrots-scaling-law behavior. The Mandelbrots-scaling-law heat-conduction problems
have not developed based on the fractal scaling-law vector calculus. This main target of the
paper is to propose the theory of the scaling-law heat conduction problem.
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The theory of the scaling-law calculus within Mandelbrots scaling law
The scaling-law calculus of one variable

Let R; and N be the sets of the positive real numbers and natural numbers, respec-
tively.
Suppose that:

E(x)= [E o(yxl’D )](x) = E(,ux]’D)

where 4 € R., x € R,, and D € R, is the fractional dimension.
The Mandelbrot scaling law, denoted by ¢(x), is given [10]:

#(x)=px"" (1)

where u ER,, x €R,, and 0 < D <1 is the fractional dimension.
The scaling-law derivative of the function Z(x) of order n with the Mandelbrot scaling
law, denoted by MSED"Z(x), is given [10]:

MSLD(n)E,(_X) :{ xD d iln

(1-D) u dx

[1]

(x) )

where n € N.
The scaling-law integral of the function &(x) with the Mandelbrot scaling law, denoted
by MSLIVE(x), is defined [10]:

L1 () = (1- D) ] £ () x 3)

The improper scaling-law integrals of the function &(x) with the Mandelbrot scaling
law are defined:

lim 0% (x) = (1-D) | £(x)x Pdr 4)

lim "1 (x) = (1- D) | & () x P 5)
and x

Jim 51 (x) = (1-D) ] &(x)xPd (6)

For the more details of the background and theory of the scaling-law calculus, see
[10-12].

The scaling-law vector calculus
Let:

1-D,

E(x,y,2,t)= [E ° (yot X' Py 2 )J(x,y,z,t)

The scaling-law partial derivatives of the function Z(x, y, z, f) with the Mandelbrot
scaling law is defined [11]:
X2 o= (x, ¥, z,t) o
w(1-D)) ox

MSLail)v:

E(x,p,z,0)=
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—_ D, aE X,y,z,t
MSL@I) (x ¥, z, t) p (1_]_) ) ( > ) ©
2 2
Dy 6'— X, ,Zt
WSt o (x, . 2,¢) = p (f 5] ( y ) N
3
MSLa(Z » 2,1t Y x s Vs Zs t
=(x,,2,) = L,z(l ) (1-D, } oyo (10)
MsLﬁ(z)E(x V,z t) y o? E x y,zt .
Tl (1-D,) i (1-Dy) | ooz
o E X V.2, t
MSLa(Z , p ’
=(x,p,2,1) = L‘l(l D)) } onon (12)
MsLa(2 (x v,z t) X 25 x ¥z, t) )
’ H (1 D) ox*
P PE(xp.2t
MsLa (x V.2, t) Yy (x i} z ) "
ﬂz (1 D, ) 6y
2D; 625
MSLa(ZZ)E(x,y,Z,t)z 2 z : (x’f’z’t) .
H (1—D3) 0z
D, e 7.t
WS OVE(x, y,2,1) = = fD) (xyz ) .
MSLa(Z ot x . t
=(x,y,2,t) = {(1 D)ty 1 (1-D, } oxot (17)
E t 6 E _X y,Z t
MSLaSyZ)d(x’y’Z’t){(l Dy) #y 1, (1-D, } oyor ! (18)
o Hy
E a E x y,Zt
MSLﬁgj):(x’y’Z’t){(l D,) ty 115 (1-D, } oot (19)
o0 Hs
and
2D, 2,:
MsLa(2 (x V.2, t) t 0 ._‘(x,y,z,t) o)

(1 - D, )2 ,Ug or’

where uo, i1, 1o, and u; are the positive constants, and 0 < D,, Dy, D,, and D; < 1 are the the

fractional dimensions.

The total scaling-law differential of the Mandelbrot-scaling-law scalar field

@ = P(x,y, z) is defined [11]:
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do =[ g (1-D,)x " " 0V |dv+[ g, (1-D,) y™ ¥ o) |dy+

+[,u3 (1 -D, ))fD3 MSL@E”@]dZ

21)

The scaling-law gradient with respect to the Mandelbrot-scaling-law function in a

Cartesian co-ordinate system is given [11] :
V(D,,DZ,D3) _ i[M (1_D1 )x—D] ] MSLaECI) +j[ﬂ2 (1 _Dz )y-02 ] MSLa(yI) +
Fk [ (1-D,)y > 0

where Z, j, and k are unite vectors in a Cartesian co-ordinate system.
Thus, eq. (21) can be re-written [11]:

do =V P opdr = v pdr

where n is the unit vector, dr — the distance measured along the normal direction:
dr = ndr =idx + jdy + kdz with dr = ndr

The scaling-law volume integral of the fractal scaling-law scalar field:
® = (ux"", 1y, pz ™)
is defined [11]:
H(@)=[[[@dr
where ’
dv = [M (l—Dl)x’D' ][,uz (1 —DZ)y’D2 ][,u3 (1—D3)Z_D3 ]dxdydz =
=d¢(x)dp(r)dg(z)

with £(x) = Ax™P1, p(y) = A" P2, and g(z) = A3z s,
Thus it is easy to see [11]:

[0 = {1052 Jeef [ (-D.)y™ Jas o n 15" Jaw=

where x € [a, b], y € [¢, d], and z € [a, f].
The scaling-law surface integral of the scaling-law vector field [11]:

H = H(ux™ ™, 2>
is defined [11]:

Z(H)zLdeszjstndS

(22)

(23)

24

(25)

(26)

27)
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where n = dS/dS with § = S(ux"P1, wy' P2, 13z P3),
Suppose that n = dS/|dS| = dS/dS, dS =|dS], and
ds = dp( )dq(z)i+d€( )dq(z)j+d€(x)dp(y)k =
=i[u,(1-D,)z" |[ s, (1-D;) =™ |dydz +
+j[ 4 (1=-D,) = ][ 4y (1= D)z Jddz +
+k[ 4 (1-D) 2" | 1, (1-D,) 2™ Jddy (28)
where [11]
dp(y)dg(z)={[ . (1=D,) =" | s (1-D,) =™ J} dydz (29)
de(x)dg(z) =[[ 14 (1-5,) 2 ][ 11, (1= Dy ) = | dxdz (30)
and
ar(x)dg (v)=[[ 4 (1-D,) = | 40, (1-D,) =™ | xdy 31)
Thus, we may obtain that [11]:
Z(H) = H”-dS = Hdep(y)dq(z)+Hyd€(x) dq(z)+sz€(x)dp(y) (32)
S N
where
H = H(px"™, "™, 2™ ) = iH + jH, + kH.
Here, we define [11]:
d (b
J'Hdﬂ j{j w(1-D)) D‘]dx}[,uz 1-D,)y™ Jdy =
, . c a
=I{J[ b oLty Jo &)
Let:
AS = A0(x) Ap(v) ={[ 4 (1= D) x> JaxH{[ , (1-D,) ™ |y} (34)
and
AV =AL(x)Ap(y)Aq(z) =
= {[/11 (I_Dl )xiD1 ]Ax}{[,uz (I_Dz)yiDz :|AJ’}{|:(IU3 (1_D3 )ZﬁD3 (35)
The scaling-law divergence of the scaling-law vector field H is defined [11]:
vPPeD) g fim L Hds (36)

A0 AV
n

where the scaling-law volume, V, is divided into a large number of small sub-volumes, AV,
with the scaling-law surfaces, AS,,, and dS is the the element of the fractal scaling-law surface S.
The scaling-law divergence eq. (36) in a Cartesian co-ordinate system can be re-writ-

ten [11]:
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vl = [,Ul (1 - D, )x_Dl ] MSL@Q)H,C +|:/“2 (1_D2))/—D2 j| MSLa(yI)H}’ +

37
+|:,U3 (1_D3)Z—DI]MSL6(21)HZ (37)
where H = iH, + jH, + kH..
The scaling-law curl of the fractal scaling-law vector field H is defined [11]:
vPePP) s = lim L HxdS (38)
AL SOAY, 0

where the scaling-law volume, V, is divided into a large number of small sub-volumes, AV,
with the scaling-law surfaces, AS,,, and dS is the element of the fractal scaling-law surface S.
The scaling-law curl in a Cartesian co-ordinate system can be re-written [11]:

i j k
VORIl = (1-D)x Yo, [ (1-D,)y™ ¥, [ (1-Dy) 20| (39)
H, H, H,

where
H=iH,—jH,+ kH,
The Gauss-Ostrogradsky-like theorem for the scaling-law vector calculus states that

[11]:
Ig[jv(Dl,Dz,Dg).WdV - chﬁW.dS (40)

where AV, is the element of the fractal scaling-law volume and dS'is the element of the fractal
scaling-law surface .

Remark. Taking D, =D,=D;=1 and u, — u, — 13— 1 into eq. (40) we get the Gauss-Os-
trogradsky theorem [11]. For the more details of the scaling-law vector calculus, see [11].

The scaling-law heat conduct equations
in the Mandelbrots scaling-law behavior

Let 7(x, y, z, ) be the temperature field at the point (x, v, z) € Vand time ¢ € T.
The First law of thermodynamics reads:

1_‘[l (xayzzat):H3(x9yaz:t)+nz(x’yaz:t) (41)

where []i(x, y, z, f) is the heat entering unit time through the scaling-law surface S,
T12(x, v, z, t) — the energy generation unit time in the scaling-law volume, V, and [[s(x, y, z, ?) —
the change unit time in storage energy in the scaling-law volume, V.

The first term of eq. (41) can be represented:

Hl(xayazat)zﬁU(xayazat)ds (42)
N
which is related to the formula analogous to the Fourier law:
U (x,y2,1) ==KV 22T (x,5,2,1) (43)

where K is the thermal conductivity of the scaling-law materials.
The second term of eq. (41) becomes:

I1, (x,y,z,t)=I”W(x,y,z,t)dV (44)



Yang, X.-d., et al.: A New Viewpoint on Theory of the Scaling-Law Heat ...
THERMAL SCIENCE: Year 2021, Vol. 25, No. 6B, pp. 4505-4513 4511

The third term of eq. (41) is equal to:
H3(x,y,z,t)=” pcMSLaﬁl)T(x,y,z,t)dV (45)
v
where p and c are the density and the specific heat of the scaling-law materials, respectively.

The First law of thermodynamics implies that eq. (41) can be written:
J‘J’ pCMSLaEI)T(x,y,z,t)dV+<ﬁJBU(x,y,z,t)dS = JﬂW(x,y,z,t)dV (46)
v N Vv

By the Gauss-Ostrogradsky-like theorem eq. (40), it is easy to see:
@U(x,y,z,t)ds - _Sq)KV(DI,DZ,Dz)T(x,y,Z’I)dS _ _I”V(D.,Dz,a) [KV(D.,DZ,D;)]T(x’y’zjt)dV (47)
N vV

N

On putting eq (47) into eq. (46), we have:
” pc MSL@ﬁl)T(x, v, z,t)dV =
Vv

= IJ‘J.{W(X’ ¥, 2, t) + V(Dl,Dst3) '|:KV(D"D2’D3) :| T(x, ¥, 2z, t)} dV (48)
Vv
such that
pc™t GEI)T(X, ¥, z,t) = V(D"DZ’DS)-[KV(D"DZ’D”}T(x, ¥, z,t) + W(x, y,z,t) (49)
Thus, the scaling-law heat conduct equation reads:
MSLé’gl)T(x, ¥, z,t) = éV(D"DZ’DS) [KV(D“DZ’DS)JT(x,y,Z,t) +iW(x,y,z,t) (50)
Taking:
VLIS RGP IT (x, p,2,0) = VEREPET (x, 2 1) (51)
in eq. (50), the scaling-law heat conduct equation reads:
1 1
MSLa(l)T RN z_v(ZDI’ZDz,ZDﬂT Wzt +—W (x,p,z,t
T (20 = (12 W (5.2 2
Taking W(x, y, z, t) = 0, we arrive:
K
Y OUT (x,y,2,1) = EV(”"“’”””T(x,y,z,t) (53)
Taking:
MSEOUT (x,y,2,6) =0 (54)

we have from eq. (53) that:
V(le.ZDZ,ZDs)T(x’ ¥, z,t) -0 (55)

which is the steady scaling-law heat conduct equation, which is an analogue to the Laplace
equation [13].

Some special cases of eq. (53) are given:
— The scaling-law -space and -time heat conduct equation in 1-D case can be given:

MSLaEI)T(x’t) — £ MSLa(Xz)T(x,t) (56)
pc
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— The scaling-law space heat conduct equation in 1-D case can be written:

0 K MSL A(2)
—T(x,t)=—"""0"T(x,t 57
o (0= (x.1) (57)
— The scaling-law time heat conduct equation in 1-D case can be expressed:
K 0°T(x,t
s g0 (3,0 = K ZT(50) (58)
pc  Ox

It is not difficult to show that eq. (43) is analogous of the theory of the Fourier [1] heat
conduction in 1822.
Taking K = K, T(x, ¢) in eq. (50), we obtain the following special cases.
— The non-linear scaling-law, -space, and -time heat conduct equation in 1-D case can be
given:

K K
MSLaf')T(x,t) =—LT(x,1) MSL@S)T(x,t) +—2 MSLé(Xz)T(x,t) (59)
pc pc
— The non-linear scaling-law space heat conduct equation in 1-D case can be written:
K K
O (t) =Ko () 51007 (1) 4 RSt o (1) (60)
ot pc pc

— The non-linear scaling-law time heat conduct equation in 1-D case can be expressed:

T T
MSLaEI)T(x’t) :ﬁT(x’t) 0 (X,t) +ﬁa (f,t)
pc Ox pc  Ox

(61)

It is not difficult to show that eqgs. (59)-(61) are analogous of the theory of the Burgers
diffusion [14].
The 1-D scaling-law heat conduct equation has an initial condition:

T(x,0)=h(x) (62)
and boundary conditions:

7(0.0)=1(1) (63)
and

&IgT(x,t) =0 (64)
Conclusion

In our work we have proposed the mathematical model for the heat conduction prob-
lem giving thought to the behavior of the Mandelbrots scaling law. We also suggested the
scaling-law equations analogues to the work of Fourier, Laplace, and Burgers. The analytic,
approximate, numerical and exact solutions for the aforementioned results are still open. These
are the key directions to study the heat transport process with the Mandelbrots scaling-law
phenomena in the future.
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Nomenclature

¢ —specific heat capacity, [Jkg'K™'] X, y, z — space co-ordinates, [m]

K —heat conductivity, [Wm'K']

T - temperature, [K] Greek symbol

¢t —time, [s] p — density, [kgm™]
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