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The main objective of the present article is to introduce a new analytical solution of 
the local fractional Landau-Ginzburg-Higgs equation on fractal media by means 
of the local fractional variational iteration transform method, which is coupling of 
the variational iteration method and Yang-Laplace transform method.
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Introduction

In the present work, we consider the following local fractional Landau-Ginzburg- 
Higgs equation on fractal media as follows:

	
2 2

2 2 3
2 2 0, 0 1u u m u n u

t x

α α

α α α∂ ∂
− − + = < ≤

∂ ∂
	 (1)

with the initial conditions

	 ( ,0) ( ),u x f xα=    ( ,0) ( )u x g x
t

α
α

α
∂

=
∂

	 (2)

where /u tα α∂ ∂  denote the local fractional derivative of ( , )u x t , m and n are parameters, and 
both ( )f xα  and ( )g xα  are given functions.

The problem (1)-(2) is widely used to model fractal heat transfer and anomalous heat 
flow in superconductors [1-8]. The local fractional differential equations have attracted lots of 
attention among scientists [9-11]. In most cases, the local fractional differential equations were 
applied to model problems in fractal media. Finding the non-differentiable solutions of the local 
fractional differential equations is the hot topics [12-15]. However, it is difficult to obtain an 
exact analytic solution for the non-linear local fractional differential equations.

Recently, some useful techniques have been successfully applied to deal with the local 
fractional differential equations, such as the local fractional variational iteration method [12, 
13], the local fractional Adomian decomposition method [14], the local fractional series ex-
pansion method [15], the fractional Laplace transform method [16] and other methods [17-20]. 
The main objective of the present article is introduce a new analytical solution of the problem 
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(1)-(2) by means of local fractional variational iteration transform method, which is coupling of 
variational iteration method and Yang-Laplace transform method.

Preliminaries

In this section, we recall some definitions and properties of local fractional calculus 
and Yang-Laplace transform. For more details, see [21].

Assume the relation below exists:

	 0( ) ( )f x f x αε− < 	 (3)

with 0| |x x δ− <  for , 0.ε δ >  Then ( )f x is local fractional continuous at 0x  which is denoted by 
0 0lim ( ) ( ).x x f x f x→ =  If ( )f x  is local fractional continuous on the interval ( , ),a b  it is denoted by:

	 ( ) ( , )f x C a bα∈ 	

Let ( ) ( , )f x C a bα∈ . The local fractional derivative of ( )f x  of fractal order at the 
point 0x x=  is given:

	
0

0

( ) 0
0 0

0

[ ( ) ( )]dD ( ) ( ) ( ) lim
d ( )x x x

x x

f x f xf x f x f x
x x x

αα
α α

α α→
=

∆ −
= = =

−
	 (4)

where 0 0[ ( ) ( )] ( 1)[ ( ) ( )].f x f x f x f xα∆ − ≅ Γ + −
A partition of the interval [ , ]a b is denoted as 1( , ),j jt t +  0,1, , 1,j N= −  0t a=  and 

Nt b=  with 1j j jt t t+∆ = −  and 0 1max{ , , }Nt t t t∆ = ∆ ∆ ∆ . The local fractional integral of ( )f x  in 
the interval [ , ]a b  is given:

	
1

( )

0 0

1( ) ( )(d ) lim ( )( )
(1 )

b N

a j jb t ja

I f x f x x f t tα α α

α

−

∆ → =

= = ∆
Γ + ∑∫ 	 (5)

In the fractal space, the Mittag-Leffler-Yang function is given [21]:

	
( )

0
( ) , 0 1

(1 )

n

n

xE x
n

α
α

α α
α

∞

=

= < ≤
Γ +∑ 	 (6)

Let

	 0

1 | ( ) | (d ) , 0 1
(1 )

f x x kα α
α

∞
< < ∞ < ≤∫

Γ +

The Yang-Laplace transforms of ( )f x  is given:

	 ,

0

1{ ( )} ( ) ( ) ( )(d )
(1 )

L
sL f x f s E s x f x xα α α α

α αα

∞

= = −
Γ + ∫ 	 (7)

where the latter integral converges and .s Rα α∈
The inverse transform of the Yang-Laplace transforms of ( )f x  is given:

	 1 , ,1{ ( )} ( ) ( ) ( )(d )
(2 )

i
L L

s s
i

L f s f x E s x f S s
β ϖ

α α α α α
α αα

β ϖ

+
−

−

= =
π ∫ 	 (8)

where s iα α α αβ ϖ= +  fractal imaginary unit iα  and Re( ) 0.s β= >
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Some useful formulas of local fractional derivative were summarized:

	
( 1)d ( ) (1 )

[1 ( 1) ]d

n nx n x
nx

α α α

α
α

α

−Γ +
=

Γ + −
	 (9)

	 1 ( )(d ) ( ) ( )
(1 )

b

a

E x x E b E aα α α α
α α αα

= −
Γ + ∫ 	 (10)

	
( 1) ( 1)1 (1 )[ ](d )

(1 ) [1 ( 1) ]

b n n
n

a

n b ax x
n

α α
α α α

α α

+ +Γ + −
=

Γ + Γ + +∫ 	 (11)

Now, we recall some basic properties of local fractional Yang-Laplace transform.
Let { } ,( ) ( )L

sL f x f sα
α =  and { } ,( ) ( ),L

sL g x g sα
α =  then we have:

	 { } , ,( ) ( ) ( ) ( )L L
s sL af x bg x af s bg sα α

α + = + 	 (12)

	 { } ,( ) ( ) ( )L
sL E c x f x f s cα α α

α α = − 	 (13)

	 { }( ) ,( ) ( ) (0)L
sL f x s f s fα α α

α = − 	 (14)

	 { } ( 1)
(1 )k

k
kL x

s
α

α α
α

+

Γ +
= 	 (15)

Local fractional variational iteration transform method

Consider the following general non-linear local fractional PDE:

	
2

2 ( , ) ( , ) ( , ) 0, 0, , 0 1u x t P u x t N u x t t x R
t

α

α αα α∂
+ + = > ∈ < <

∂
	 (16)

where Pα  denotes the linear local fractional differential operator, and Nα  represents the general 
non-linear local fractional operator.

Taking local fractional Yang-Laplace transform on eq. (16), we obtain:

	 [ ] [ ]
2

2 ( , ) ( , ) ( , ) 0L u x t L P u x t L N u x t
t

α

α α α α αα

 ∂
+ + = 

∂ 
	 (17)

By applying eq. (14), we have:

	 2 [ ( , )] ( ,0) ( ,0) [ ( , )] [ ( , )]us L u x t s u x x L P u x t L N u x t
t

α
α α

α α α α αα
∂

− − = − −
∂

	 (18)

or

	 2 2 2
1 1 1 1[ ( , )] ( ,0) ( ,0) [ ( , )] [ ( , )]uL u x t u x x L P u x t L N u x t
s s t s s

α

α α α α αα α α α α
∂

= + − −
∂

	 (19)

Operating with the Yang-Laplace inverse on both sides of eq. (19) gives:

	 [ ]1
2
1( , ) ( ,0) ( ,0) ( , ) ( , )

(1 )
t uu x t u x x L L P u x t N x t

t s

α α

α α α αα αα
−∂  = + + − − 

Γ + ∂  
	 (20)



Deng, S.-X., et al.: Analytical Solution to Local Fractional Landau-Ginzburg-Higgs Equation ... 
4452	 THERMAL SCIENCE: Year 2021, Vol. 25, No. 6B, pp. 4449-4455

Finding the local fractional derivative in (20), we obtain:

	 [ ]1
2
1( , ) ( ,0) ( , ) ( , ) 0uu x t x L L P u x t N x t

t t t s

α α α

α α α αα α α α
−∂ ∂ ∂  − − − − = 

∂ ∂ ∂  
	 (21)

By making the correction function, we get:

	 [ ]

1

1
0 2

( , )

( , ) ( ,0) 1( , ) ( , ) ( , )

k

k k
k t k k

u x t

u x u xu x t I L L P u x N u x
s

α α α
α

α α α αα α α α
τ

τ τ
τ τ τ

+

−

=

 ∂ ∂ ∂  = − − + +  
∂ ∂ ∂  

	

Finally, the solution u(x,t) is given:

	 ( , ) lim ( , ).kk
u x t u x t

→∞
= 	

The solutions of the problem (1)-(2)

In this section, we present the solutions of local fractional Landau-Ginzburg- Higgs 
equation on fractal media.

Consider the following local fractional Landau-Ginzburg-Higgs equation on fractal 
media:

	
2 2

2 2 3
2 2 0, 0 1u u m u n u

t x

α α

α α α∂ ∂
− − + = < ≤

∂ ∂
	 (22)

with the initial conditions:

	 ( ,0) ( ),u x f xα=     ( ,0) ( )u x g x
t

α
α

α
∂

=
∂

	 (23)

We rewrite eq. (22) as follows:

	
2 2

2 2 3
2 2
u u m u n u

t x

α α

α α
∂ ∂

= + −
∂ ∂

	 (24)

By taking local fractional Yang-Laplace transform and applying eq. (14), we have:

	
2

2 2 2 3
2[ ( , )] ( ,0) ( ,0)u us L u x t s u x x L m u n u

t x

α α
α α

α αα α

 ∂ ∂
− − = + − 

∂ ∂ 
	 (25)

or

	
2

2 2 3
2 2 2

1 1 1[ ( , )] ( ) ( ) uL u x t f x g x L m u n u
s s s x

α

α αα α α α

 ∂
= + + + − 

∂ 
	 (26)

Then, applying the inverse Yang-Laplace transform to eq. (26), we get:

	
2

1 2 2 3
2 2
1( , ) ( ) ( ) ( , )

(1 )
tu x t f x g x L L u x t m u n u

s x

α α

α αα αα
−   ∂ = + + + −  Γ + ∂   

	 (27)

From eq. (27), we have:
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1 2 2 3
2 2
1( , ) ( ) 0uu x t g x L L m u n u

t t s x

α α α

α αα α α α
−   ∂ ∂ ∂

− − + − =  
∂ ∂ ∂   
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Making the correction function is given:

	

1

2
1 2 2

0 2 2

( , )

( , ) ( ,0) 1( , )

k

k k k
k t k k

u x t

u x u x uu x t I L L m u n u
s x

α α αα
α

α αα α α α α
τ

τ τ τ

+

−

=

   ∂ ∂ ∂∂ = − − − + −    ∂ ∂ ∂ ∂      
	

Using the initial condition, we can select:

	 0 ( , ) ( )u x t f xα= 	

From this selection, we can get the successive approximations solutions.
Next, two examples are presented in order to demonstrate the efficiency of the afore-

mentioned method.
Example 1: We consider the following linear local fractional Landau-Ginzburg-Higgs 

equation on fractal media:

	
2 2

2 2 , 0 1u u u
t x

α α

α α α∂ ∂
− = < ≤

∂ ∂
	

with the initial condition:

	 ( ,0) 2 2 ( ),u x E xαα= −    ( ,0) 4 ( )u x E x
t

α
α

αα
∂

= − −
∂

	

Firstly, from the initial condition, we select:

	 0 ( , ) 2 2 ( )u x t E xαα= − 	

Then, applying previous algorithm, we get the following approximations:

	
2

10 0 0
1 0 0 02 2

( , ) ( ,0) 1( , ) ( , ) t
u x u x uu x t u x t I L L u

s x

α α αα
α

α αα α α α α
τ

τ τ τ
−

   ∂ ∂ ∂∂ = − − − +    ∂ ∂ ∂ ∂     
	

	
2

11 1 1
2 1 0 12 2

( , ) ( ,0) 1( , ) ( , ) t
u x u x uu x t u x t I L L u

s x

α α αα
α

α αα α α α α
τ

τ τ τ
−

   ∂ ∂ ∂∂ = − − − +   
∂ ∂ ∂ ∂     

	

	
3

3 2( , ) ( , ) 8 ( )
(1 3 )

tu x t u x t E x
α

α
α α

= − −
Γ +

	

Finally, the solution is:

	
22 2( , ) 2 2 ( ) 1

(1 ) (1 2 )
t tu x t E x
α α

α
α α α

 
= − − + + Γ + Γ + 

 	

Example 2: We consider the following non-linear local fractional Landau-Ginzburg- 
-Higgs equation on fractal media:

	
2 2

2 2
2 2 0, 0 1u u m u n u

t x

α α

α α α∂ ∂
− − + = < ≤

∂ ∂
	

with the initial conditions:
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	 ( ,0) 2 sech ( ),u x xαα=    and   ( ,0) tanh ( )sech ( )u x x x
t

α
α α

α αα
∂

= −
∂

	

By the initial conditions, we select:

	 0 ( , ) 2 2 ( ),u x t E xαα= Ω    and   1
1 (2 )E xαα

Ω =
+

	

Then, we obtain:

	
2

1 30 0 0
1 0 0 0 02 2

( , ) ( ,0) 1( , ) ( , ) t
u x u x uu x t u x t I L L u u

s x

α α αα
α

α αα α α α α
τ

τ τ τ
−

   ∂ ∂ ∂∂ = − − − + − =    ∂ ∂ ∂ ∂     
	

	 2
0 ( , ) 4 ( )[ (2 ) 1]

(1 )
tu x t E x E x
α

α α
α α α

= − − Ω
Γ +

	

	
2

1 31 1 1
2 1 0 1 12 2

( , ) ( ,0) 1( , ) ( , ) t
u x u x uu x t u x t I L L u u

s x

α α αα
α

α αα α α α α
τ

τ τ τ
−

   ∂ ∂ ∂∂ = − − − + − =   
∂ ∂ ∂ ∂     

	

	
2

3
1( , ) 2 2 ( )[6 (2 ) (4 ) 1]

(1 2 )
tu x t E x E x E x
α

α α α
α α α α

= − − − Ω
Γ +

	

and so on.

Conclusion

In the present work, the analytical solution for the local fractional Landau-Ginzburg-
Higgs equation is obtained by the local fractional variational iteration transform method. The 
results obtained show that the solution is convergent very rapidly. The present method is very 
efficient for finding the analytical solutions for a wide class of non-linear local fractional dif-
ferential equations. 

Nomenclature
t	 –	 time, [s]
x	 –	 space co-ordinates, [m]

Greek symbol

α	 –	 fractal dimension, [–]
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