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To solve the mismatch between heating quantity and demand of thermal stations, 
an optimized control method based on depth deterministic strategy gradient was 
proposed in this paper. In this paper, long short-time memory deep learning algo-
rithm is used to model the thermal power station, and then the depth deterministic 
strategy gradient control algorithm is used to solve the water supply flow sequence 
of the primary side of the thermal power station in combination with the operation 
mechanism of the central heating system. In this paper, a large number of histor-
ical working condition data of a thermal station are used to carry out simulation 
experiment, and the results show that the method is effective, which can realize the 
on-demand heating of the thermal station a certain extent and improve the utiliza-
tion rate of heat.
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Introduction 

With the popularization of the central heating system in northern Cities of China, how 
to achieve the optimal control objectives of energy conservation and emission reduction under 
the premise of ensuring the heating quality has become a hot research topic among scholars. A 
great deal of research has been done on the modelling and optimal control of the central heat-
ing system by Chinese and foreign scholars. Some scholars proposed establishing a simulation 
model of urban secondary heating networks by combining structure mechanisms with exper-
imental identification methods. Some scholars have established a simulation model of pow-
er-power-power-Load-Energy storage in the whole process of heat energy production, trans-
mission, distribution, and consumption of heating systems. A multi-objective and multi-cycle 
optimization model of regional energy system design and operation strategy has been proposed. 
Some scholars proposed a real-time optimization model of multi-source and complementary 
urban heating system load scheduling based on particle swarm optimization algorithm and used 
PHP to get each index’s feasible weight region. Because the central heating system of non-lin-
ear, multivariable, strong coupling, large hysteresis properties, such as the traditional mecha-
nism, mechanism of combining experimental method cannot accurately thermal station model 
is set-up, but the neural network has strong ability of fitting, can learn characteristics of the 
internal relation between data, so he uses the length of time memory (LSTM) neural network 
and back propagation (BP) neural network, respectively thermal station model is set up, prepare 
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the way for subsequent optimization control. Deep reinforcement learning is a new end-to-end 
algorithm that combines deep learning with the perceptual ability and reinforcement learn-
ing with decision-making ability. Among them, a deep deterministic strategy gradient (DDPG) 
based on actor-critic is an algorithm to solve continuous state space tasks. It uses experiences a 
playback mechanism to reduce the correlation of continuous action. At present, some scholars 
have applied DDPG to financial stock management. Some scholars use the DDPG algorithm to 
realize session scheduling [1]. Some scholars have introduced DDPG to energy management. 
Some scholars combine DDPG with a power grid cutting machine. It shows the advantage of 
the DDPG algorithm in solving problems in continuous action space. Therefore, because of the 
phenomenon that the heat supplied by heat stations is sometimes much more considerable than 
or far less than the demand, this paper proposes an optimal control strategy based on the DDPG 
algorithm for the primary side of heat stations and realizes the on-demand heating of heat sta-
tions by adjusting the water supply flow on the primary side.

Principle of DDPG algorithm

The actor-critic algorithm

Actor-critic (AC) is made up of the stra-
tegic network (actor) and the evaluation net-
work (critic), which evaluates whether the ac-
tions generated by the actor-network are good 
or bad. The actor-network modifies the actions 
according to the evaluation of the critic net-
work. Its structure is shown in fig. 1.

The workflow of the AC network is the 
actor-network generates actions based on the 

current state of the environment. The environment according to the action give return. The 
critic network evaluates actions. The actor-network adjusts the next output action according to 
the evaluation of the critic network, that is, adjusts the strategy. The network revises the eval-
uation criteria based on return R. The cycle continues until the network converges or reaches 
a set threshold. The AC network uses time difference (TD) method to update the network step 
by step. The TD uses the next state’s value function estimate the current value function, which 
is characterized by low variance, low deviation, and fast convergence. The mathematical ex-
pression:

1 1( ) ( ) [ ( ) ( )]t t t t tV s V s a r V s V sγ+ +← + + − (1)
where st, st+1 are the state of the agent at time t, t + 1, respectively, V(st), V(st+1) represent t,  
t + 1 are the value function at the time, α means update step size, rt+1 – the return at time t + 1, 
γ stands for discount factor, rt+1 + γV(st+1) stands for TD target, which can be estimated by using 
boot strapping method. The δt = rt+1 + γV(st+1) – V(st) is the TD deviation. The TD calculates the 
TD error based on the value function output from the actor-network, and then it uses the strategy 
gradient to update the actor-network parameters to realize the optimization of the AC network.

The DDPG algorithm

The AC involves two neural networks, and in the continuous state, there is correlation 
before and after each parameter update, which sometimes leads to the one-sidedness of neural 
network update and even the problem that it is impossible to learn things. To solve this prob-
lem, the AC algorithm is modified, and the DDPG algorithm is obtained. The DDPG network 

Figure 1. Structure of AC
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comprises the AC leading network and the AC target network and adds memory libraries. Each 
time the leading network interacts with the environment, it produces a set of samples and puts 
them into the memory bank, then taken out at random when needed, thus reducing the sam-
ples’ correlation. The AC target network has the same structure as the AC target network, but 
with different parameters. The AC target network regularly passes parameters to the AC target 
network, which updates the adversary network’s arguments by calculating the error values of 
the corresponding value functions generated by the adversary network and the target, thereby 
optimizing the arguments of the adversary network. In the actor-arguments leading network, the 
actor leading network implements parameter optimization according to the leading network’s 
argument. The DDPG network structure successfully solves the problem that the AC network 
cannot learn anything in continuous action prediction, thus realizing the control of continuous 
action spatial sequence [2].

Operation principle of the central heating system

The central heating system is composed of a heat source, heat station, and heat user. 
The heating network is responsible for connecting each part, as shown in fig. 2. The primary 
side is between the thermal station and the heat source, and the secondary side is between the 
thermal station and the heat user. The heat source generates heat and enters the heat station 
through the primary side heating network. The heat is transferred to the secondary side heating 
network in the heat station through the heat exchanger, and the heat enters the heat users along 
with the secondary side heating network [3]. The primary side of the heat station is mainly stud-
ied here. Therefore, a simplified treatment is made for the heat source and heat users, assuming 
that the heat source produces enough heat, and the number of heat users is fixed.
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Figure 2. Structure of the central heating system

As can be seen from fig. 2, there is a regulating valve at the primary side inlet of the 
thermal station, which can control the water supply flow, and the water supply flow affects the 
heat supply quantity. Therefore, the problem of optimal control of heat supply quantity is trans-
formed into optimizing the set value of water supply flow at the primary side of a heat station. 
Local regulation is adopted here for the thermal power station.



Cao, M.: Thermal Station Modelling and Optimal Control Based on Deep ... 
2968	 THERMAL SCIENCE: Year 2021, Vol. 25, No. 4B, pp. 2965-2973

Primary side model of the heating station of  
central heating system

Establishing a relatively accurate thermal station model is based on optimal control 
of the central heating system. According to the thermal station system’s working principle, the 
experimental system’s dynamic model is determined:

1 2 3( , , , )y f u u u t= (2)
where u1 is the opening degree of the regulating valve on the primary side of the heat power 
station (primary water supply flow), u2 – the water supply temperature at the primary side of the 
thermal power station, u3 – the outdoor temperature, and y – the heat supply of a heat station. 
The primary water supply flow, primary water supply temperature, and outdoor temperature are 
taken as input, and the heat supply quantity is taken as output. The thermal station is treated 
as a black box to learn the relationship between its input and output and establish the thermal 
station’s heating model. The BP neural network and LSTM neural network were, respectively 
used to model the thermal power station. Finally, the modelling effect was compared, and an 
appropriate modelling method was found [4].

The LSTM neural network

The LSTM is an improved network-based 
on a circulating neural network, and its cell unit 
structure is shown in fig. 3. The LSTM neural 
network controls cell state by deliberately add-
ing input gate, forgetting gate and output gate, 
and makes information pass selectively through 
gate, that is, adding information or removing in-
formation. The ct–1's information, ht–1 and xt enter 
the input gate at the same time to provide up-
dated candidate data for the cell. The forgetting 
gate determines the data be forgotten based on 
ct–1, ht–1 and xt. The ct replaces the candidate data 

in the input gate with the forgotten data selected by the forgetting gate in a particular proportion 
complete the update ct. Finally, ct outputs the result ht at time T. The LSTM neural network lim-
its the cell’s capacity through the gate so that necessary information can be stored in the cell’s 
limited memory capacity.

Unlike the traditional neural network, LSTM neural network takes into account the 
influence of the data of the previous moment on the current moment’s data. When processing 
time-series data characteristics, it can better mine the internal relationships among the data. 

The thermal station produces data with time-se-
quence characteristics. The LSTM model of the 
thermal station reflects the data timing charac-
teristics of the thermal station and solves the 
problem of long-term data dependence [5].

Thermal station model based on LSTM

The model adopts a structure of 3-3-1, that 
is, three input variables, three intermediate hidden 
layers, and one output variable, as shown in fig. 4.

Figure 3. Schematic diagram of LSTM  
unit structure
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Figure 4. The LSTM-based  
thermal station model
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Figure 4, u1 and u2 are the primary water supply flow and primary side water supply 
temperature at T of the thermal power station, u3 is the outdoor temperature at time T, y – the 
heating quantity at time T + 1 of the heat station. After many experiments, we found that when 
the number of hidden layers is 3, and the number of nodes is 20, the output result is better. The 
setting of other parameters is shown in tab. 1.

Table 1. Parameters of the thermal station model  
based on LSTM

Parameter names Parameter value
Number of input variables 3
Number of output variables 1
Size of input data for each group 24
Time step 1
Hidden layer node 20
Number of hidden layers 3
Vector 0. 01
Number of iterations 1 000

The BP based  
thermal station model

The model adopts a 3-1-1 structure: 3 in-
put variables, 1 hidden layer, and 1 output vari-
able. Its structure is shown in fig. 5. Relevant 
parameters of the model were obtained through 
a large number of experimental analyses, as 
shown in tab. 2 [6].

Table 2. The BP based thermal 
station model parameters

Parameter names Parameter value
Input variables per variable 3
Output variables per variable 1
Hidden layer nodes 7
Vector 0. 1
Number of iterations 1000
Training deviation 0.001

Analysis of modelling results

The data adopted the historical working condition data of a heat power station. The 
paper selected the data from December 1 to 30th, 2018, for 30 days in a row, and sampled the 
data at an interval of 1 hour, 24 times a day, as shown in tab. 3. The outdoor temperature was 
obtained from China Weather Net. We processed the collected data and screened the data that 
differed significantly from other data for elimination [7]. The values of three of the input vari-
ables are not of the same order of magnitude. To avoid the prediction result being dominated by 
some eigenvalues with too large dimensions, the input data is standardized.
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Table 3. Training data

Time
Primary side  
water supply 
flow [TH–1]

Primary side  
water supply  

temperature [℃]

Outdoor  
temperature [℃]

Heating 
load [GJ]

2018/12/1 0:00 74.33 82.4 –1 11.74
2018/12/1 1:00 76.29 82.5 –2 11.96

2018/12/30 22:00 79.8 82.29 –12 12.18
 2018/12/30 23: 00 80.3 82.29 –13 12.41

A total of 744 sets of data were used for 
the modelling experiment of the model struc-
ture. We selected 24 sets of data on December 
31, 2018, as the test set and visualized the data’s 
test effect. The BP based thermal station model 
results are shown in fig. 6. The model’s predict-
ed value is roughly consistent with the trend of 
the real value change, and the maximum relative 
error is 3%.

Modelling results based on LSTM ther-
mal station are shown in fig. 7. The predicted 
value trend is closer to the real value, and the 
maximum relative error is 2.1%. We can see 
that the thermal station model based on LSTM 
is more accurate than that based on BP, which 
meets the heating quantity control precision re-
quired by the heating company. Therefore, the 
LSTM algorithm is used to model the thermal 
station [8].

The DBP based primary side optimization  
control of thermal power station

Data selection

In the DDP based primary side optimi-
zation control for thermal power stations, data 
from January 1 to February 27, 2019, were se-
lected as training data, and the sampling interval 
was 1 hour, as shown in tab. 4.

Table 4. Training data table

Time
Primary side  
water supply 
flow [TH–1]

Primary side  
water supply  

temperature [℃]

Outdoor  
temperature [℃]

Heating 
load [GJ]

2019/1/1 0:00 82.29 79.7 –13 12.54
2019/1/1 1:00 82.29 81.0 –13 13.02

2019/2/27 22:00 64.01 80.3 –6 10.18
 2019/02/27 23: 00 63.36 80.7 –6 10.45

Figure 7. The LSTM thermal station  
model results

Figure 6. The BP based  
thermal station model results
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Among them, the outdoor temperature adopts the data of China Weather Network. 
The historical working condition data of a thermal power station is used to supply the primary 
side’s water supply temperature. We take the KTH + 1dst side water supply temperature, the  
k + 1dst outdoor temperature, and the KTH + 1dst side heating quantity generated by the actor 
main network as the heat station model’s input. In the central heating system, the difference 
between the two days before and after the primary side water supply temperature is relatively 
small. Here the k + 1 day primary side water supply temperature is replaced by the k day prima-
ry side water supply temperature [9].

Short-term thermal load prediction of heat stations

The short term heat load prediction of a heat station is set to make the heat user get 
suitable heating needs. Based on the 24 hours outdoor temperature sequence of the same day, 
the 24 hours outdoor temperature sequence of the previous day, and the heat supply quantity 
sequence of the previous day as inputs, a BP heat load prediction model was established to 
predict the change of heat load in the future 24 hours range, and the results of this model were 
taken as a part of the performance index function of the primary side optimization control of 
the heat station.

Design of performance index functions

The performance index function is set to determine the heating quantity obtained by 
the DDPG control algorithm:

1i pU Q Q= − (3)
where Ui is the absolute value of the heating quantity error of the heat station, Qp – the heating 
quantity value output by DDPG control algorithm, and Q1 – the short-term thermal load fore-
cast output value of the heat station. The DDPG control algorithm outputs r according to Ui. 
As Ui gets smaller, r gets bigger. The larger r indicates that the water supply flow sequence at 
the primary side of the heating station output by the actor leading network in the DDPG control 
algorithm is more reasonable. According to the thermal power station’s fundamental operating 
principle, it also needs to meet the constraints:

 heat source

 heat source

1

1 min 1 1 max

g

g g g

p

T T

T T T
Q Q

<

< <

<
(4)

where T1g is the water supply temperature on the primary side and meets the upper and lower 
limits, Theat source – the outlet temperature of the heat source, and Qp – the amount of heat added 
to a heat station.

The overall design of the DDPG control algorithm

We combine the DDPG control algorithm with the thermal station’s primary side 
model to form a coherent system. The system learns the continuous action space to realize the 
optimized water supply flow sequence of the primary side of the thermal station by optimizing 
the primary side’s control. The block diagram of the optimal control of the thermal station’s 
primary side based on the DDPG algorithm is shown in fig. 8.

Actor main and target networks are composed of two full connection layers, one using 
the ReLU activation function, the other using Sigmoid activation function, according to the wa-
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ter supply flow limit scope worth to the primary 
network water supply flow. The main and target 
networks use a full connection layer to evaluate 
the primary water supply flow and the primary 
heat supply, using ReLU activation functions. 
The learning rate of the actor host and target 
network is set as 0.00001, the learning rate of 
the critic and target network is set as 0.00001, 
the updating rate of four network parameters is 
0.01, and the memory storage capacity is 3000.

The flow of the DDPG control algorithm 
is as follows. 

–– (1) Randomly initialize actor and critic main network parameters and assign them to the 
corresponding parameters of actor and critic target network, respectively, and initialize state 
St simultaneously. 

–– (2) Actor generates at based on st input into the thermal station model and the outdoor tem-
perature and primary water supply flow at the corresponding time, and output st+1, which is 
compared with the predicted thermal load (performance index function) to meet the perfor-
mance index function generate a return rt. 

–– (3) Store the sample data (st, at, rt, st+1) at time T in the memory bank, then assign the value 
of st+1 to st continue the execution. 

–– (4) Generate another set of (st, at, rt, st+1) and put it in the memory bank until the number of 
data reaches the capacity set by the memory bank. 

–– (5) When the memory database is full, randomly sample the conversion data (si, at, ri, si+1) 
and train it as a unit input data set of actor, target network. Actor tirget network outputs ai+1 

according to Si +1, and the target network outputs future discount return γqi+1 and value func-
tion ri + γqi+1 according to si+1 and N. 

–– (6) Calculate the loss function value L = E[ri + γqi+qi+1 – qi)2 of ai+1 converted data by us-
ing the value function qi+1 output from the leading critic network and the value function  
ri + γqi+1 output at the corresponding moment of the target network, then use Adams method 
to optimize the leading critic network. The main critic network uses the strategic gradient 
to optimize the actor leading network. The actor leading network assigns corresponding 
parameters to the actor target network, respectively. 

–– (7) Loop (4)~(6) until the time step is completed.

Simulation verification

Software environment: the computer op-
erating system for Windows 10, operating en-
vironment for Tensorflow1.0, the programming 
language for Python3.5. We selected 24 sets of 
data on February 28, 2019, as the test data to 
verify the DDPG based primary side optimiza-
tion control model’s generalization ability for 
thermal power stations. The output results of the 
thermal power station based on the DDPG algo-
rithm are shown in fig. 9.

Figure 8. Block diagram of primary side 
optimization control of thermal power station 
based on DDPG algorithm
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In fig. 9, the blue line represents the predicted value of the thermal station’s short-term 
heat load, and the maximum error between the predicted value and the actual heat load of the 
thermal station is guaranteed to be within 5%. Therefore, the predicted value of the thermal 
station’s short-term heat load is approximately the actual heat load for reference. The green line 
represents the heating quantity obtained by the DDPG control algorithm. It can be seen that the 
heating quantity controlled by the DDPG algorithm is basically consistent with the predicted 
value of the short-term heat load of the heat station.

Conclusion

Aiming at the problem of heat supply and demand do not match, through a large num-
ber of actual data and combined with a variety of factors affecting thermal station is established 
a lateral heat DDPG control model of optimization, the model of the output thermal station 
heating quantity compared with prediction heat load, according to meet the degree of the sexual 
index function adjust a net flow of water supply, thus achieve thermal heat to each according 
to his need. The simulation results show that the control scheme can obtain the optimized flow 
sequence of primary water supply and realize the heating station’s goal on demand.
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