
Tang, K., et al.: Optimization and Control of Fuel Cell Thermal Management ... 
THERMAL SCIENCE: Year 2021, Vol. 25, No. 4B, pp. 2933-2939	 2933

OPTIMIZATION  AND  CONTROL  OF  FUEL  CELL  THERMAL 
MANAGEMENT  SYSTEM  BASED  ON  NEURAL  NETWORK

by

Kunhao TANG, Sanhua ZHANG*, and Youlong WU

Department of Computer and Information Science,  
Hunan Institute of Technology Shool, Hengyang, China

Original scientific paper 
https://doi.org/10.2298/TSCI2104933T

Aiming at the direct methanol fuel cell system is too complicated, difficult to model, 
and the thermal management system needs to be optimized. The article attempts 
to bypass the internal complexity of direct methanol fuel cell, based on experi-
mental data, use neural networks to approximate arbitrarily complex non-linear 
functions ability to apply neural network identification methods to direct methanol 
fuel cell, a highly non-linear thermal management system optimization modelling. 
The paper uses 1000 sets of battery voltage and current density experimental data 
as training samples and uses an improved back propagation neural network to 
establish a battery voltage-current density dynamic response model at different 
temperatures. The simulation results show that this method is feasible, and the 
established model has high accuracy. It makes it possible to design the real-time 
controller of the direct methanol fuel cell and optimize the thermal energy manage-
ment system’s efficiency.
Key words: methanol fuel cell, back propagation neural network,  

thermal management system, efficiency optimization

Introduction 

The fuel cell is a clean and efficient power generation technology. It is a high efficien-
cy continuous power generation device that directly converts the chemical energy of fuel and 
oxidant into electrical energy by electrochemical reaction without burning. Direct methanol 
fuel cell (DMFC) directly uses methanol as fuel, its aqueous solution is easy to carry and store, 
without an intermediate conversion device, and the system structure is simple. In DMFC, meth-
anol has higher electrochemical activity and higher volume energy density. Under the same 
power density, DMFC is small and low in cost and is especially suitable for portable power 
supplies and automotive power supplies.

To improve the DMFC power generation system’s operating performance, extend its 
service life, and ensure the system’s safe, reliable, and low cost operation, we must effectively 
control it. For example, the two key issues that currently affect the performance of DMFC are 
the low activity of the methanol electrochemical oxidation catalyst and the membrane permea-
bility of methanol. The most important indicator for judging the performance of DMFC is the 
voltage/current density characteristics of the fuel cell, and these are all related to the operating 
temperature of the battery. Close relationship. The operating temperature range of DMFC is 
50-100 ℃.
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On the one hand, increasing the working temperature of DMFC can improve the an-
ode’s ability to resist CO poisoning, speed up the anode electrochemical oxidation, reduce 
cathode polarization, increase membrane conductivity, and improve battery performance. On 
the other hand, the battery’s temperature increases, and water vapor’s partial pressure also in-
creases [1]. When air is used as the oxidant, the concentration of oxygen in the reaction will be 
reduced. More seriously, the Nafion type perfluorosulfonic acid proton exchange membrane.
When it is a battery diaphragm when the battery working temperature reaches 120-130 ℃, it 
will cause the membrane to lose water, and the resistance of the membrane will increase con-
siderably, causing the battery to not work correctly and shortening the battery life. Therefore, 
ensuring that the battery works at an appropriate temperature is the key to improving battery 
performance and service life.

At present, some scholars have established various mathematical models of DMFC. 
They have established various static or dynamic analytical models from different angles based 
on the electrochemical theory and physics conservation laws. The establishment of these mod-
els is essential for analysis and improvement. The performance of DMFC plays an important 
role. According to the DMFC system analysis, it can be known that it is a multi-input multi-out-
put non-linear system with strong distributed parameter characteristics. The existing battery 
mathematical models are based on various assumptions and experiments. Due to the system’s 
complexity, the aforementioned models have to be simplified in various ways, ignoring some 
uncertain factors, resulting in large differences in the models. Simultaneously, due to the com-
plexity of the model expressions, these models cannot meet real-time control [2].

This article attempts to bypass the internal complexity of the DMFC system and uses 
an improved back propagation neural network to model the DMFC non-linear system [3]. With 
battery temperature as the input variable, battery voltage, and current density as the target vari-
ables, the neural network is analyzed according to the experiment’s input and output data. Con-
duct training to establish the voltage/current density model of DMFC. The simulation results 
show that the accuracy of the model is high, and the identification results are quite ideal, which 
lays the foundation for the online control of DMFC.

The DMFC system description and analysis

According to the analysis of the dynamic characteristics of the DMFC power genera-
tion system, the voltage and current density model of the DMFC can be described:

( ), ( ), ( )U U t J t v t = Φ  
   

(1)

where v → = [va(t), vc(t)] is the flow velocity of 
anode fuel and cathode reaction gas, T(t) – the 
temperature change vector, and Ta0 – the feed 
temperature of anode fuel. It can be seen from 
the eq. (1) that the working temperature of the 
fuel cell is mainly affected by Ta0, that is, ad-
justing Ta0 can realize the control of the battery 
working temperature. To fully illustrate the fuel 
cell operating temperature’s influence on the 
battery voltage and current density, we set the 
neural network identification model’s input as 
the battery operating temperature. The output 

Figure 1. The DMFC voltage/current density 
curve at different temperatures
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vector is the battery voltage and current density, respectively, and keep v constant by adjusting 
the anode feed. The temperature makes the battery temperature change steadily (50-80 ℃). 
The corresponding experimental data is obtained as the training sample of the neural network. 
According to the experimental data, the voltage/current density curve of DMFC is shown in fig. 
1 at different battery operating temperatures [4].

The working temperature of the battery is increased from 50-80 ℃. As the tempera-
ture rise increases the chemical reaction speed, reduces the cathode polarization, and increases 
the membrane’s conductivity, the battery can reach a larger voltage and current density, and 
the battery performance is greatly improved [5]. The requirement of model identification is to 
dynamically simulate the change curve of battery voltage and current density under different 
working temperatures and complete the non-linear mapping from the input vector to the net-
work model’s output vector. In this way, the identification model can be described by a non-lin-
ear difference equation:

( 1) ( ), ( ), ( )

( 1) ( ), ( ), ( )

U k U k J k T k v

J k U k J k T k v

 + = Φ  
 + = Ψ  

   

  
(2)

where k is a discrete-time variable.

The DMFC system identification based  
on improved back propagation algorithm

The back propagation neural network modelling

The proton exchange membrane fuel cell system’s input and output is a very compli-
cated non-linear time-varying mapping relationship. It's output voltage, Vstack, and stack tem-
perature, IFC, are related to load current, IFC, anode hydrogen pressure, D, air compressor volt-
age, Vcm, and heat dissipation [6]:

stack stack stack anode cm fan room init{ , } ( , , , , , )V T F I p V V T T= (3)

The back propagation network determination

According to the experimental measurable and control conditions, the input of the 
selected system model is load current, Istack, anode hydrogen pressure, Panode, air compressor 
voltage, Vcm, cooling fan voltage, Vfan, model output is stack voltage, Vstack, and stack tempera-
ture, Tstack.

Since the PEMFC system’s output is related to both the current moment and the pre-
vious system state, the network is generally constructed in two ways to reflect the network time 
function. The first is by adding a delay input unit to the network input. The second is by using a 
local recurrent neural network, which introduces dynamic links in the neural network [7]. This 
article will use the first method to identify the PEMFC system. The typical system manifesta-
tion of adding a delay action input unit based on the forward neural network:

( ) [ ( 1) , ( ); ( 1) , ( )]y i f y i y i n x i x i m= − ⋅⋅⋅ − − ⋅⋅⋅ − (4)
This structure’s advantage is that the network structure obtained after learning is en-

tirely equivalent to the existing control system, but this structure cannot guarantee that the 
output error will approach zero. That is, it cannot guarantee the convergence of the algorithm. 

The input of the model includes the delay of the input and the actual output of the 
system. The system’s output at the last moment is used to act on the network structure so that 
the structure has a trend of dynamic change. The existing system’s output and input are bound-
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ed, which is more stable than the parallel structure. Based on the forward network, most of 
the series-parallel structure is adopted. According to the experimental system conditions, the 
model mapping relationship based on the series-parallel forward neural network identification 
structure can be described:

FC FC stack cm fan anode FC FC{ , } [ ( 1), ( 1), ( 1), ( 1), ( 1), ( 1)]V T F I k V k V k p k V k T k= − − − − − − (5)

Determine the learning sample

To obtain a model with a strong generalization ability, we need to determine a learn-
ing sample that can comprehensively and accurately reflect the system’s characteristics to be 
identified. Learning samples should have three characteristics: compactness, ergodicity, and 
compatibility. Density means that to accurately reflect the actual system model structure, corre-
sponding data must be provided and ergodicity refers to the global concept [8]. To improve the 
generalization ability of the model, a global data range is a necessary condition, and the more 
data coverage is extensive, the generalization ability of the obtained model will be relatively 
improved. Compatibility refers to the impact on network learning when there are overlapping 
areas in the input space of different samples. Corresponding the experimental data processing, 
removing part of the data that cleaned the air inside the stack during the startup state, and re-
moving obviously inconsistent data. Finally, the data we get is 4763 groups. 

Normalization

The back propagation neural network’s input layer can have various variables and is 
suitable for various models, but the unit and magnitude of each model’s input variables may be 
very different. For example, the unit and the magnitude of the input variables of the fuel cell are 
different. Differ greatly. To make all input variables in the same position, the input data must 
be processed:

min

max min

i i
i

i i

x xx
x x

−
=

−
(6)

According to the previous formula, the network input obtained after processing the 
sample is normalized to 0-1. For the output of the network model, the output result corresponds 
to denormalization processing.

Implementation of back propagation network

According to the data of the learning sample, the number of input neurons in the 
network is selected to be six, and the number of output neurons is two to meet the minimum 
input and output requirements of the system while reducing the complexity of the model, which 
can speed up the convergence time of the model and make the model small computational 
complexity. According to the forward feedback type back propagation neural network 
characteristics, theoretically, a three-layer network can approximate arbitrarily complex 
functions with arbitrary precision. The initial network model is set to three layers [9]. The 
function code:

1 2 1 2

net new
net new ( ,[ , ... ],{ , ... } , , )N N

ff
ff PR S S S TF TF TF BTF BLF PF

=
= (7)

Weight or threshold learning function and performance function. The structural block 
diagram of DMFC system identification is shown in fig. 2, where TDL is the time-division 
multiplex delay link.
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In Newton’s method:
2 1[ ( )] ( )x E x E x−∆ = − ∇ ∇ (8)

we set the error-index function

1

1( ) ( )
2

N

i
i

E x e x
=

= ∑ (9)

where e(x) is the error. Then:
( ) ( ) ( )TE x J x e x∇ = (10)

2 ( ) ( ) ( ) ( )TE x J x e x S x∇ = + (11)
where J(x) is the Jacobian matrix and S(x) – the 
error function

2

1
( ) ( ) ( )

N

i i
i

S x e x e x
=

= ∇∑ (12)

For the Gauss-Newton method, the 
amount of change in the weight and threshold:

1[ ( ) ( )] ( ) ( )T Tx J x J x J x e x−∆ = − (13)

The error adjustment curve during train-
ing is shown in fig. 3. When the error drops to 
5.995 ⋅ 10–6, it basically no longer changes. We 
take the error target as 6 ⋅ 10-6.

The DMFC system neural network 
identification results

In the paper, trained neural network is used to identify the DMFC system’s dynamic simula-
tion. Under different battery operating temperatures, the battery voltage and current density changes 
identified by the neural network are compared with the actual battery voltage and current density 
response. The recognition results obtained are shown in figs. 4-7. It can be seen from the figure that 
the neural network identification model can basically simulate the dynamic response of the battery 
voltage/current density of the system, and the maximum error does not exceed 0.006 mV. The error 
is determined by the error target determined during training. The most suitable neural network topol-
ogy can be found through multiple adjustments to improve identification accuracy.
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Figure 2. The DMFC system identification  
block diagram
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This paper uses an open air-cooled stack 
system. The 4763 sets of sample data obtained 
are used to train the network. The initial learn-
ing rate of the network is 0.01. The learning rate 
should be set to a small value because when the 
set learning rate is too large, the convergence 
speed can be accelerated, but it will occur when 
it is close to the critical point. Turbulence pre-
vents the model from converging. Use MAT-
LAB software to train the network. First, set the 
number of hidden layers of the model to 15 lay-
ers, and the maximum number of training times 
of the model is 1000. The model’s minimum er-
ror is 0.0046549 after 93 times of training, and 
there is no lower error in the next six iterations. 
Therefore, the training is ended at 99 times of 
learning. The error learning curve of the back 
propagation neural network model is shown in 
fig. 8. The 60% of the sample data is training 
data, 20% is the validation data set, and the last 
20% is used to test the model’s generalization 
ability.

In the case of a sudden change in the 
stack’s output current, the output voltage line of 
the stack drops and then rises, and then reaches 
a stable value. When the current changes sud-
denly, the amount of hydrogen and air demand 
will change, and the controller controls the aux-
iliary components. There will be a certain lag in 
providing the corresponding flow and pressure, 
so the fuel and oxidant flow delay will be affect-
ed when the reactor internally reacts. The I-V 
curve of the back propagation network model 
basically reflects this dynamic characteristic. 
Therefore, it is believed that the model struc-

Figure 6. Identification effect at an  
operating temperature of 70 ℃

Figure 7. Identification effect at 80 °C  
working temperature
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ture identified by the back propagation network can effectively reflect the characteristics of the 
fuel cell system. The back propagation neural network model compares the stack temperature 
output with the actual stack output when the load current changes suddenly, as shown in fig. 9. 
When the current changes suddenly, the controller needs to output PWM to control the cooling 
fan voltage to ensure that the stack temperature does not exceed set temperature. The stack 
temperature output by the back propagation network model is basically the same as the stack 
temperature when the actual current changes can accurately reflect the change curve of the fan 
control stack temperature when the current changes.

Conclusion

We use neural network identification methods to realize the modelling of complex 
non-linear systems such as DMFC. It is entirely feasible, and the accuracy of modelling is rel-
atively high. Most importantly, it avoids the complex analytical modelling process and makes 
the non-linear system. The input and output characteristics can be quickly obtained. Although it 
cannot have an apparent physical meaning like the analytical model, it can effectively express 
the complicated non-linear mapping relationship of the complex non-linear system’s input and 
output.
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