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Based on the thermal network and the MATLAB artificial intelligence toolkit, a 
combustion optimization hybrid modelling of a 300 MW coal-fired power station 
boiler is carried out. The boiler is optimized for combustion, and the weight co-
efficient method is used to convert the multi-objective optimization problem into 
a single-objective optimization problem. The results show that the relative error 
average absolute value of the boiler thermal efficiency and NOx emission mass 
concentration calibration samples are 0.142% and 1.790%, the model has good 
accuracy and generalization ability. The weight coefficient method can select the 
corresponding weight coefficient according to the actual situation, with the boiler 
thermal efficiency or NOx emission mass concentration as the optimization focus, 
which has certain guiding significance for combustion optimization.
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NOx emissions, heating modelling, multi-objective optimization

Introduction

The factors that affect the thermal efficiency and NOx emissions of coal-fired power 
plant boilers are more complex. For a given boiler, factors such as boiler load, furnace oxygen 
content, furnace air distribution mode and coal feeder combination mode will affect boiler 
thermal efficiency and NOx emissions, and these influencing factors mutual coupling presents a 
complex non-linear relationship, making it difficult to analyze boiler combustion data.

At present, intelligent algorithms are being vigorously promoted in the thermal effi-
ciency and NOx emission modelling of coal-fired power plant boilers. Some scholars have es-
tablished prediction models of NOx emission concentration and boiler thermal efficiency based 
on intelligent algorithms, using BP neural networks and support vector machines. Some schol-
ars are based on nerves. The network established a hybrid model of boiler combustion, which 
realized the soft measurement of various parameters such as NOx emissions, fly ash carbon con-
tent and boiler thermal efficiency. Some scholars realized the optimization of boiler combustion 
with the help of genetic algorithms. The aforementioned modelling and optimization many 
ideas and methods have their own characteristics and are worth learning from.

On the basis of previous studies, the author uses the operating data of a 300 MW 
coal-fired power station boiler, and based on the MATLAB artificial intelligence toolkit, the BP 
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neural network is used to establish a BP neural network model for boiler combustion character-
istics of boiler thermal efficiency and NOx emission mass concentration [1]. On this basis, we 
use genetic algorithm (GA) to establish an optimization model for boiler combustion, and trans-
form the multi-objective optimization problem of boiler thermal efficiency and NOx emission 
mass concentration into a single-objective optimization problem through the weight coefficient 
method to transform the weight coefficient, thereby achieving boiler thermal efficiency and NOx 
emission quality multi-objective optimization of concentration.

Research object

A 300 MW coal-fired power plant boiler is DG-1025/17.5-II4 type subcritical param-
eters, tangential combustion, natural circulation drum boiler. The boiler adopts a single furnace, 
open air lay-out, primary reheating, balanced ventilation, solid exhaust slag, full steel frame, 
full suspension structure, burning bituminous coal, with a metal rain cover on the top of the fur-
nace [2]. The burner adopts a horizontal dense and light type direct current swinging pulverized 
coal burner, and two dense and light air and powder air-flow are injected from the four corners 
of the furnace. Each corner burner is arranged with 13 layers of nozzles, including five layers 
of primary air outlets (A, B, C, D, E) and eight layers of secondary air outlets (including one 
layer of overfire air (OFA) nozzles and seven layers of secondary air outlets (AA, AB, BC, CC, 
DD, DE, EE). The pulverizing system adopts a medium-speed coal mill, a cold primary fan, a 
positive pressure direct blowing pulverizing system, and is equipped with five coal mills (A, 
B, C, D, E).

The BP neural network model

Establish a BP neural network model

The paper uses the BP neural network to 
establish the boiler combustion characteristics 
BP neural network model of boiler thermal ef-
ficiency and NOx emission mass concentration. 
The model has 20-dimensional inputs, includ-
ing generator power, furnace oxygen content, 
primary wind speed, secondary air door open-
ing and burnout air door opening and other pa-
rameters represent the influence of boiler load, 
excess air coefficient, primary and secondary 

air ratio, and over-fire air on the combustion characteristics of the boiler [3]. The schematic 
diagram of the model is shown in the fig. 1.

The working conditions selected for this modelling are all around the rated load of 
300 MW, and the BP neural network model of boiler combustion characteristics is only for full 
load conditions. The test selects 100 sets of boiler operating data, of which 85 sets of data are 
used to train the BP neural network. Fifteen sets of data are used for verification. The sample 
data is shown in tab. 1, where ρ is the mass concentration of emission NOx and η is the thermal 
efficiency of the boiler. When establishing the BP neural network model of the boiler's thermal 
efficiency and NOx emission mass concentration, the network’s training cannot be too saturat-
ed, that is, the network training error cannot be too low. Oversaturated network training will 
reduce the generalization of the network, and its training error should be controlled within a 
reasonable range [4]. For boiler thermal efficiency, due to its own variation range comparison. 
Therefore, the training error of its prediction should be controlled within 0.5%, the variation 

Figure 1. The BP neural network model of  
boiler combustion characteristics
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range of NOx emission mass concentration is relatively large, and the training error should be 
controlled within 5%. When training the network, the training error should be compared with 
the calibration the errors are combined and compared, so that the BP neural network model of 
the boiler combustion characteristics meets both the training error requirements and the net-
work generalization requirements.

The paper uses the feedforward net function that comes with the BP neural network to 
create the BP neural network, using a three-layer network, the hidden layer is set to one layer, 
and the trainlm function is used as the training function of the network. The transfer function 
and the learning rate are the default of feedforwarded function. After setting, the training effect 
is best when the number of hidden layer nodes is 24.

Effectiveness verification of BP neural network model

In order to observe and compare intuitively, the paper sorts out the 2-D output of the 
BP neural network model (i.e., boiler thermal efficiency and NOx emission mass concentration), 
respectively, and compares the training effects and relative results of 85 sets of training samples 
and 15 sets of calibration samples for boiler thermal efficiency [5]. The errors are summarized 
separately in the same figure, and the training effects and relative errors of the NOx emission 
mass concentration are summarized and sorted. The results are shown in figs. 2-5.

Figure 2 shows the training effect of boiler thermal efficiency. Figure 3 is the relative 
error diagram of boiler thermal efficiency samples. From fig. 3, the maximum absolute relative 

Table 1. Test sample data

Serial 
number

Power 
[MW]

Wind speed of each primary wind [ms–1] Coal feed amount of each coal feeder [th–1]
A B C D E A B C D E

1 303.9 30.98 35.72 30.2 43.76 36.58 50 24.06 29.71 39.97 32.74
– – – – – – – – – – – –

18 297 34.75 37.04 32.5 44.69 35 42 26.4 36.56 38 29.84
19 307.4 32.46 33.51 25.75 41.09 37.84 44 25.49 31.26 42.85 26.47
20 306.3 26.01 28.83 35.58 37.35 32.6 45 23.3 34.75 39.36 29.76
– – – – – – – – – – – –

99 305 34.81 33.48 30.9 43.54 31.39 44 22.26 30.31 32.15 39.65
100 305.7 30.25 33.26 31.03 40.61 31.7 40 26.79 33.19 43.67 24.24

Serial 
number

Oxygen 
mass 

fraction 
[%]

Opening degree of each secondary air door [%] Burnout 
throttle 
opening 

[%]

ρ 
[mgm–3] η [%]

AA AB BC CC DD DE EE

1 3.02 64.9 48.93 42.79 33.34 45.85 52.46 58.64 72.33 412.76 92.26
– – – – – – – – – – – –

18 4.33 75.69 62.98 53.14 37.42 49.22 56.54 53.02 33.72 496.26 91.98
19 3.1 71.18 64.97 45.18 40.2 49.61 52.36 51.7 69.56 394.45 91.32
20 2.58 53.25 42.79 42.75 41.55 54.89 66.33 70.69 61.05 353.09 91.37
_ _ _ _ _ _ _ _ _ _ _ _

99 2.69 68.82 47.91 45.33 31.38 40.49 49.44 49.85 63.34 432.04 92.07
100 2.99 69.09 58.99 49.17 35.37 46.59 52.02 35.88 22.95 404.45 92.34
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error of boiler thermal efficiency training samples is 0.176%. The training accuracy meets the 
requirements and has high generalization.

Figure 4 shows the training effect of the emission mass concentration of NOx. Figure 
5 is the relative error graph of the emission mass concentration sample of NOx. From fig. 5, the 
maximum relative error of the training sample NOx emission mass concentration is 3.312%, rel-
ative the average absolute value of the error is 0.469%. The accuracy of training and calibration 
meets the requirements.

The ELM*I refers to a feedforward artificial neural network algorithm, ID-ELM re-
fers to the improved classification algorithm of extreme learning machines, and ELM refers to 
the extreme learning machine algorithm.
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Figure 5. A relative error of emission  
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Boiler combustion optimization model based on genetic algorithm

Establishment of combustion optimization model

Based on the established BP neural network model of boiler thermal efficiency and 
NOx emission mass concentration boiler combustion characteristics, the paper establishes a ge-
netic algorithm-based boiler combustion optimization model [6]. The fitness function in the 
optimization model is replaced by the BP neural network model, and BP neural the network 
model is used to evaluate the optimization effect. The optimization goals are boiler thermal effi-
ciency and NOx emission mass concentration. This problem essentially belongs to the category 
of multi-objective optimization. The author gives a weight coefficient to the two objectives to 
be optimized, and linearly adds them to convert the multi-objective optimization problem into 
a single-objective optimization problem. Adaptation of genetic algorithm the degree function 
can be expressed:

min ( ) ( ) 1F x a η βρ= − + + (1)
where α and β are the weighting coefficients of boiler thermal efficiency and NOx emission 
mass concentration, α takes the commonly used coefficients 0.3, 0.7, 0.4, 0.6, 0.5, 0.5, 0.6, 0.6. 
Then take the commonly used coefficients 0.4, 0.7, 0.3 for β to perform calculation analysis and 
research, and the last item plus 1 is to ensure that the fitness value is always positive.

The population individuals are all binary coded, the total population individuals' num-
ber is set to 50, the binary digits of each variable are 20, a total of 20 dimensions. We set the 
maximum number of iterations as 60. In order to ensure the rationality of the optimization 
results, the variables of each individual in the population, that is, the boiler combustion param-
eters, should be constrained within a certain range [7]. The constraint range is determined based 
on the actual operating experience of the power plant, that is, the decimal system represented 
by the binary code of each variable parameter constraints are within a certain range, which can 
narrow the optimization range and improve the feasibility of the optimization results. The pa-
rameter constraints are shown in tab. 2.

Table 2. Parameter constraint range

Parameter
Wind speed of 
each primary 
wind [ms–1]

Coal feed amount 
of each coal 
feeder [th–1]

Opening degree 
of each secondary 

air door [%]

Burnout throttle 
opening [%]

Oxygen mass 
fraction [%]

Bound  
range 25-45 0-50 20-100 20-100 2-5.5

Optimization results

The optimization results of boiler thermal efficiency and NOx emission mass con-
centration under different weighting coefficient ratios is shown in figs. 6-10. In order to better 
compare the optimization results, tab. 3 lists two groups of boiler original operating data and 
five groups of different weighting coefficient ratios [8]. The optimization results. The first and 
second groups of data are the original operating data. The third to seventh groups correspond to 
the weighting coefficient ratios of boiler thermal efficiency and NOx emission mass concentra-
tion of 0.3, 0.7, 0.4. Optimized results at 0.6, 0.5, 0.5, 0.6, 0.4, and 0.7, 0.3. The first set of data 
is 0.3 and the second set of data is 0.7, 0.4 is the original operating data. Optimizing the results 
of the first set of data is 0.6, 0.5, the results of the second set of data are 0.5, 0.6, 0.4, and finally 
calculated as the ratio of the first set of data to the second set of data is 0.7, 0.3.
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When α = 0.3, β = 0.7, see fig. 6, the 
weighting coefficient ratio of the boiler thermal 
efficiency is 30%, and the weighting coefficient 
ratio of the emission mass concentration of NOx 
is 70%, more attention should be paid to the 
emission quality of NOx. At this time, the emis-
sion mass concentration of NOx is reduced to 
316.77 mg/m3, which is nearly 28% lower than 
the average emission mass concentration of 
NOx (440 mg/m3) of the 100 operating data sets. 
The optimization effect of the emission mass 
concentration is significant [9]. At the same 

time, the boiler thermal efficiency is increased to 92.3%, which is 0.6% higher than the average 
value of boiler thermal efficiency (91.7%) of the 100 sets of operating data. Compared with the 
operating data, the optimized combustion parameters of the boiler show that the amount of coal 
fed to each layer is more uniform, and the air distribution form is the lower anoxic combustion 
method, and the boiler thermal efficiency and NOx emission mass concentration have been 
improved.

When α = 0.4 and β = 0.6, see fig 7, the weight coefficient ratio of boiler thermal ef-
ficiency is 40%, and the weight coefficient ratio of NOx emission mass concentration is 60%, 
the more attention is paid to the emission mass concentration of NOx, The mass concentration 
of emission NOx was reduced from the average to 361.68 mg/m3, a decrease of about 18%. The 
optimization effect of mass concentration of emission NOx was more significant; at this time, 

Table 3. Comparison of operating parameters before and after optimization

Serial 
number

Power 
[MW]

Wind speed of each primary wind [ms–1] Coal feed amount of each coal feeder [th-–]
A B C D E A B C D E

1 297.67 30.45 33.79 30.73 38.69 34.36 47 24.16 33.65 27.14 35.84
2 305.07 32.6 35.31 32.96 42.99 34.74 49 27.49 39.49 28.97 27.51
3 300 26.67 26.93 26.6 33.16 30.2 39.49 36.63 33.43 30.82 27.31
4 300 27.51 27.49 28.57 32.25 29.88 38.11 33.39 30.69 36.42 28.87
5 300 27.98 28.92 27.26 34.87 31.96 35.67 32.83 35.42 30.69 32.85
6 300 28.57 29.31 28.12 33.11 30.41 34.33 30.22 34.53 33.19 34.24
7 300 28.17 29.51 29.13 35.66 31.96 32.96 30.02 34.2 33.21 35.21

Serial 
number

Oxygen 
mass 

fraction 
[%]

Opening degree of each secondary air door [%] Burnout 
throttle 
opening 

[%]

ρ 
[mgm–3] η [%]

AA AB BC CC DD DE EE

1 2.73 70.6 44.99 44.19 35.46 34.83 52.25 46.32 69.76 489.84 92.129
2 3.19 65.55 49.87 40.33 39.62 40.51 56.98 49.16 70.46 429.19 90.96
3 2.59 34.06 44.2 58.56 73.84 45.23 56.43 51.43 71.15 316.77 92.3
4 2.73 36.45 46 62.79 70.83 49.54 53.92 53.51 61.56 361.68 92.75
5 2.95 45.55 35.18 63.26 68.28 46.08 56.38 51.07 55.82 379.04 93.37
6 3.28 51.97 61.83 49.63 63.02 53.07 46.19 55.01 50.24 423.94 93.71
7 3.54 49.19 59.57 55.47 65.21 65.18 51 56.23 42.18 477.5 93.96

92.3

92.2

92.1

92

91.9

91.8

91.7

91.6

91.5

Bo
ile

r e
ffi

ci
en

cy
 [%

]

Samples
0 5 10 15 20 25

Simulate
Measure

Figure 6. Optimization results when  
α = 0.3 and β = 0.7
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the boiler thermal efficiency increased from the 
average to 92.75%, an increase of 1.05 %, the 
optimization effect is more obvious than when 
α = 0.3 and β = 0.7.

When α = 0.5, β = 0.5, see fig. 8, the boil-
er thermal efficiency and the weighting coeffi-
cient ratio of the emission mass concentration 
of NOx are the same, the two attention levels 
are also the same, and the emission mass con-
centration of NOx decreases from the average 
to 379.04 mg/m3, a reduction of about 14%. 
Boiler thermal efficiency increased from the 
average to 93.37%, an increase of 1.67%, com-
pared to the current status of boiler thermal efficiency, its optimization effect is significant, 
and this weighting coefficient ratio is also the majority power plants tend to be more in-depth 
research under this weighting coefficient ratio.

When α = 0.6, β = 0.4, see fig. 9, the weighting coefficient ratio of the boiler thermal 
efficiency is 60%, and the weighting coefficient ratio of the emission mass concentration of NOx 
is 40%, the boiler thermal efficiency is more concerned, hope further improve the thermal effi-
ciency of the boiler. At this time, the emission mass concentration of NOx is reduced to 423.94 
mg/m3, which is nearly 4% lower than the average value [10]. The optimization effect is sig-
nificantly worse than the previous weight coefficient ratio (70%, 60%, and 50%). The thermal 
efficiency of the boiler has increased from the average value to 93.71%, an increase of 2.01%, 
and its optimization effect is significant, but this is based on the premise of sacrificing a certain 
NOx emission mass concentration.
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Figure 9. Optimization results when  
α = 0.6 and β = 0.4

Conclusion

The average absolute value of the relative error of the test sample is 1.790%, which 
can meet the requirements. The optimized primary wind speed is lower than the original operat-
ing data under the premise of ensuring the transportation of pulverized coal. The coal feed rate 
of each layer is basically uniform and burning anoxic combustion in the lower part of the device 
and increasing the amount of burn-out air are beneficial to inhibit the formation of NOx, while 
a proper increase in the oxygen mass fraction and the use of equal air distribution are beneficial 
to improve the thermal efficiency of the boiler.
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