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The butterfly optimization algorithm (BOA) is a novel meta-heuristic optimization 
algorithm, inspired by the intelligence foraging performance of butterflies. The 
aim of the current research is to minimize the energy consumption of an office 
building in Seattle using BOA. A heat transfer model of the building was modeled 
in EnergyPluse software and annual energy demand of the building was computed. 
A two-way coupling was established between EnergyPluse and BOA. The Energy-
Pluse takes into account the non-linear interaction of design variables and com-
putes the energy demand of the building. Then the computed amount of energy de-
mand would be transferred to the BOA, where the optimization algorithm decides 
about changing the design variables. Then, a new set of design variables would be 
transferred to EnergyPluse for a new simulation. Through the dynamic interaction 
of BOA and EnergyPluse, a building with minimum energy demand was designed. 
The impact of the number of butterflies on the performance of the optimization 
algorithm was also investigated. It was found that using 50 butterflies would lead 
to the best optimization performance. A comparison between the present method 
and literature optimization methods was made, which showed that BOA with 15 
butterflies or higher could adequately avoid local minimums and reach the best 
minimum with a reasonable computation effort.
Key words: building optimization problems, butterfly optimization algorithm, 

building energy demand, optimum building design

Instructions

The buildings consume about 40% of the word energy and produce about 36% of the 
global CO2, and this rate has an increasing trend [1]. Around 57% of the energy demand of con-
structions is related to air conditioning and lighting purposes [2]. As a result, clearly reducing 
the energy demand of constructions is an essential task [3, 4]. 

A building optimization is a practical approach that can minimize the energy demand 
of a building design systematically. However, the energy demand of a building is a function of 
weather profile, usage profile, geographical location, and constructing materials. The variation 
of each design parameter could induce non-linear impacts on the other parameters. Thus, the 
building optimization issue is a complex and non-linear problem. The energy demand of a 
building could be computed through numerical simulations. The numerical simulations demand 
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high computational cost and iterative solution of algebraic equations, and they can estimate 
the energy demand of a building. The energy consumption of a building is related to its design 
parameters, which most of the time are adjustable. For example, the thickness of exterior walls, 
the size of windows, the hangings, and other parameters could be easily adjusted during a 
design. The literature review demonstrates that the variation of design parameters could effec-
tively reduce the building energy demand [4-7]. Thus, building optimization problems (BOP) 
have attracted the attention of many researchers in recent years with the aim of minimization 
of building energy consumptions [8-10]. The intelligence approaches have also been used to 
model the buildings [11]. Machairas et al. [12] reviewed some of optimization algorithms for 
building designs. 

The particle swarm optimization (PSO) and genetic algorithms (GA) methods are 
well-investigated approaches for BOP. These approaches do not require function gradients, 
and they can effectively avoid local optimums. These advanced approaches apply systematic 
search strategies, and hence, they require many building simulations, and their convergence rate 
is slow. Each building simulation is a time-consuming step with high computational cost, and 
hence, some of the BOP could take months [13]. Moreover, since the BOP are non-linear prob-
lems, some of the optimization approaches may be caught in a local extremum and fail to find 
the global optimum [14]. Hence, new optimization methods with new capabilities are highly 
demanded to deal with BOP. 

Michalek et al. [15] employed GA, sequential quadratic programming, and simulated 
annealing methods to minimize the energy consumption of a building design. Moreover, the ant 
colony optimization method was applied to seek a trade-off between the cost of a media center 
in Paris and the lighting performance [16]. Alajmi and Wright [17] attempted to find optimum 
set of GA parameters for BOP. They found that the population size was the most crucial pa-
rameter on the GA performance. Ilbeigi et al. [18] utilized a neural network to learn the energy 
consumption behavior of an office building. Then GA was used to find the optimum control 
parameters of the building. The energy consumption of the office could be reduced by 35%, 
using the optimization approach. Qin et al. [19] employed a novel distributed reinforcement 
learning (a type of machine learning approach) to optimize energy consumptions in buildings. 
The method could optimize the building better than many typical optimization algorithms. Ma-
chine learning approaches were also used by several recent researchers [20-22]. 

Each optimization method has some advantages and disadvantages, and hence, there 
is no general optimization method that could dominate all of the literature optimization meth-
ods [23]. However, some of the optimization methods could show better performance for a 
specific type of optimization problems. Wetter and Wright [24] surveyed the capability of the 
Hooke-Jeeves (HJ) and GA algorithms for reducing the energy consumption of buildings. These 
authors showed that GA could reach an optimum design with a fair computational cost while 
HJ had a high possibility of local minimum entrapping. Zhou et al. [25] applied several optimi-
zation methods to BOP. They employed EnergyPlus as the simulation software and a module 
for optimization. The Nelder Mead Simplex (NMS), GA, simulated annealing, quasi-Newton, 
and tabu search algorithm were some of the investigated methods. The authors found that NMS 
could efficiently minimize the energy consumption of an office building. The GA and PSO were 
also used to optimize the air condition size and building envelopes [26]. 

Wetter and Wright [27] explored the optimization performance of nine optimization 
methods for BOP. These results of this investigation indicate that the PSO-HJ could be the best 
optimization approach with minimum energy consumption. This is while the NMS method 
has the tendency to being caught in local minima. Other researchers such as Kampf et al. [28], 
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Bucking et al. [29], Futrell et al. [30], and Hamdy et al. [31] have also examined the optimiza-
tion methods for BOP. 

In a recent excellent investigation, Waibel et al. [32] published a systematic survey of 
various optimization approaches for minimization of energy consumption in buildings. They 
concluded that an optimization method with a high convergence rate could fail to find a global 
optimum due to the risk of being caught in local minima. Furthermore, no optimization method 
could be dominantly best for BOP. 

Nowadays, new advanced optimization methods are introduced by researchers [33]. 
Many of these approaches show dominant performance over the regular methods available in 
[32, 34, 35], and thus they could be promising for BOP. However, the performance of these new 
methods has not been tested for BOP. Thus, the examination of new optimization methods for 
BOP is highly demanded. 

The novel BOA was proposed by Arora and Singh [36] for solving global optimiza-
tion problems. The method mimics the mating and food search behavior of butterflies. Butter-
flies use their smelling sense to locate a mating partner or nectar site. Thus, the BOA was built 
following butterflies smelling sense and co-operative behavior in their foraging strategy. In 
this algorithm, the butterflies emit some fragrance, enabling them to communicate with other 
butterflies.

Although BOA was proposed just in 2019, it has been employed for the optimization 
of many scientific and engineering problems in a short time. For instance, Yıldız et al. [37] ap-
plied BOA in automobile design. This algorithm was employed to find an optimized shape for 
a suspension arm of a vehicle. The BOA successfully reduced the weight of the component by 
32.9%. Tan et al. [38] applied the BOA method to solve PDE. The authors used the optimization 
method to find the coefficients of a complex non-linear function in order to satisfy the partial 
differential equation. The BOA has also been used for power generation optimization of pho-
tovoltaic arrays by control of shadings [39], and regression analysis for software testing [40]. 
The BOA is an attractive method that does not require gradients of the objective function, and 
it contains only a few setting parameters. The algorithm has a fair balance between exploitation 
and exploration during search phases. The BOA has also been used for feature selection [41], 
photovoltaic [42], and fuel cell [43] parameters identification. 

As mentioned, Ilbeigi et al. [18] utilized the combination of a neural network and 
GA to optimize an office building. Thus, the computations of the EnergyPlus should be saved 
and then transfer to a neural network. However, in the present study, we developed a coupling 
interface to perform the communications between the EnegyPlus and the optimization method 
directly. 

Attention literature works reveals that the BOA was capable of dealing with com-
plex and non-linear optimization problems efficiently. However, this optimization approach 
was never applied to the buildings and optimization of their energy demand. Thus, the current 
research aims to apply BAO for minimizing the energy demand of an office building for the 
first time. 

Methodology

The current research aims to examine the optimization capability of BOA in dealing 
with the minimization of energy consumption in buildings. Here, a benchmark office construc-
tion located in Seattle was selected as the test case. Then, the BOA was applied to minimize the 
annual energy consumption of the office. Thus, a Building Energy Optimization (BEO) prob-
lem was established in the present research. The BEO approach involves three main blocks. 
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The first block is building simulation and the computation of energy consumption. The optimi-
zation method is the second step, which receives the simulation data and controls the decision 
variables. The third block is a coupling interface that connects the first and second blocks. The 
details of each block will be described later. 

The building models

Here a benchmark office consist of four 
design variables was considered [27]. Several 
researchers analyzed this office building, and 
here, we took it from [32]. Table 1 shows the 
name and range of design variables, which 
are the windows sizes for the East and West 
façades, the shading transmittance, and the ori-
entation of the construction. The details of wall 
materials, ceiling, floor, and windows have 
been described in [27, 32], and the office mod-
el is also available in supplementary materials. 
Thus, the details were not repeated here for the 

sake of brevity. The EnergyPluse model of the office with all geometrical details and utilized 
materials has been included in the supplementary materials, fig. 1. 

Table 1. The control parameters of the office building
Control parameter Description Bounds

X1 Orientation of the building [−180°, 180°]
X2 Width of the west window [0.1, 5.9] m
X3 Width of the east window [0.1, 5.9] m
X4 Shading transmittance [0.2, 0.8]

EnegyPlus for building energy simulation

In the present research, EnergyPluse was used to simulate the energy consumption in 
the office and compute the annual energy consumption. The EnergyPluse has been developed 
by the US Department of Energy [44], and its capability and accuracy in building energy sim-
ulations have been tested in the literature. The computational core of EnergyPluse involves the 
legacy programs of DOE-2 and BLAST [44], so the computational cost of EnergyPluse is fair 
with high accuracy. The EnergyPluse sovles the following implicit finite difference scheme for 
conservation of energy in building elements [45]:
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(1)

where T is the node temperature, ∆x – the finite difference layer thickness, ∆t – the calculation 
time step, and j – the previous time step. Here, i is the node being modeled, i–1 – the neighbor 
node to the exterior of construction j, and i+1 – the neighbor node to the interior of the construc-
tion. The Cp and ρ represent the specific heat of the material, and density, respectively, kw shows 
the thermal conductivity for an interface between i node and i+1 node, and kе – the thermal 
conductivity for the interface between i node and i–1 node.

The model of the office can be introduced in EnergyPluse by using an .idf file contain-
ing the geometry and material properties of the building. The .idf files are indeed structured text 

Figure 1. The model of office building 
introduced in EnergyPluse is identical  
to the model of [27]
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files. EnergyPluse gets an .idf file of a building along with the weather-profile and simulated 
the energy consumption for the model. After computations, it writes the outcomes in text files. 

Butterfly optimization algorithm 

The BOA is a nature-inspired optimization algorithm, which has been recently intro-
duced by Arora and Satvir [36]. The BOA was inspired by the foraging and mating strategy of 
butterflies in nature. The following three rules govern the BOA algorithm: 
–– The butterflies propagate some fragrance, and hence, they can attract each other. 
–– Every butterfly could move randomly or to the finest butterfly propagating a higher degree 

of fragrance. 
–– The incentive strength of a butterfly is under the influence of the foraging site or objective 

function.
Implementation of BOA involves three phases, which are the initial, iteration, and fi-

nal phases. At the beginning of the optimization, BOA first executes an initialization subroutine 
and creates some initial butterflies, NB, which represent the solution space and the computed 
objective function. The number of butterflies will remain constant during the optimization. 

Following the fitness value, butterflies will generate fragrance. Then the butterflies 
will move toward the best butterfly while they are searching around their location. At the final 
phase, BOA will stop when it reaches an optimum solution. Since the objective function should 
be evaluated for all butterflies, NB, at each generation, NG, the total OBJ function evaluation 
will be NB × NG. Details about the movement equations of the butterflies, fragrance propagation, 
and mathematics of BOA could be found in [36]. The source codes of BOA are also provided 
in the supplementary files of the paper. Here the original source codes were adopted from [36], 
and then it was modified in the form of a function be included in the coupling interface. The 
modified version of BOA has been included in supplementary files. 

Coupling BOA and EnergyPluse 

The EnergyPluse can simulate the energy 
consumption in the office building, and the BOA 
has the ability to search for the optimum solution 
for an OBJ function. However, the BOA is an in-
dependent code which needs to receive the value 
of the OBJ function at each generation, while En-
ergyPluse is another independent software, which 
needs to receive the values of design parameters 
to compute the OBJ function. Thus, a coupling in-
terface (CI) is essential to connect the BOA and 
EnergyPluse in both-ways communication. Fig-
ure 2 shows the framework of the communication 
between BOA and EnergyPluse, which should 
be handled by the coupling interface. Figure 3 
depicts a schematic view of the optimization pro-
cess. Here, we wrote an in-house code to read the 
idf files and inject the values of design parameters 
in the .idf model. Then. CI should execute Ener-
gyPluse along with the weather file and wait until 
EnergyPluse complete the computations and write 

Figure 2. The optimization framework 
consisting of the EnergyPluse and  
BOA code
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the energy consumption data into output files. 
Then, CI should read the output files and compute 
the OBJ function using eq. (2). The design param-
eters will be received by CI where CI will inject 
them to the .idf file, and the loop will continue un-
til an optimum solution reaches. The final design 
parameters will be reported as the optimum solu-
tion, which minimizes the annual building energy 
consumption.

Building energy performance  
evaluation metrics

The annual energy consumption per unit 
of the floor for the office was introduced the 
same way as [27, 32]: 

ch
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In the aforementioned equation, Qh(.), Qc(.), and E(.) represent the annual [kWha–1] 
cooling, heating, and lighting energy demand of office, respectively. Electricity consumption 
was multiplied by a primary energy factor (PEF) of 3.0, while the cooling (ηc = 0.77) and heat-
ing (ηh = 0.44) efficiencies were applied. Thus, eq. (2) shows the annual energy consumption of 
the office per unit area and should be minimized. This equation denotes the objective function 
for the optimization algorithm. As mentioned, fig. 1 illustrates a 3-D model of the office, which 
was simulated in EnergyPluse. For each simulation, the parameters of eq. (2) were comput-
ed by executing EnergyPluse and extracting the output files. All of the codes and models are 
published along with this paper and can be accessed from Ghalambaz et al. [46] at https://doi.
org/10.17632/xtzkmjkgtr.1.

Results and discussions

The integration of BOA, CI, and EnergyPluse was used to minimize the annual ener-
gy consumption of the office building introduced in section Methodology. This office was also 
investigated by [32]. We also took the same budget of 500 evaluations, so the computational 
cost of simulations will be the same as the literature-works, and consequently, the comparison 
between the optimization results will be fair. As mentioned, each butterfly at each generation 
requires an OBJ function evaluation. Hence, by assuming a constant value of 500 evaluations, 
the number of generations could be considered as NG = 500/NB. Thus, the final convergence and 
performance could be affected by the initial phase. Here we repeated the optimization 20 times 
so the results could be plotted in boxplot format. 

For each boxplot, the bottom line shows the minimum value of F(X), while the top 
lines show the maximum evaluated value of the objective function (energy consumption). The 
middle lines show the median of the obtained energy consumption for repeated computations. 
The bottom and the top of the boxes denote the first quartile and the third quartile, respectively. 

As seen, using five and ten butterflies as the initial population could lead to high me-
dian values and large maximums. Thus, the chance of being caught in local optima will be high. 
Using 15 and more butterflies gives a fair response since the butterflies could effectively search 

Figure 3. The conceptual model of the  
coupling between BOA and EnergyPluse
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the solution space. Figure 4 shows that using 50 
butterflies could give the best median and also 
minimum and maximum range of responses. 
Thus, the case of five butterflies was selected as 
the worst setting for BOA, while the case of 50 
butterflies was adopted as the best setting. 

The details of the 20 runs for the cases of 
five and 50 butterflies are summarized and re-
ported in tab. 2. Moreover, the obtained values 
of the control parameters are also reported in 
the tables. For five butterflies, it is interesting 
that the second row has found the minimum 
value of F(X) = 132.995. However, the best-ob-
tained value for the case of 50 butterflies was 
corresponding to the 20th row with a minimum 
value of F(X) = 133.544. The reason could be 
the limited number of search agents (five butterflies). When the number of butterflies is low, the 
algorithm focuses on a small search space around the search agents (butterflies). Thus, it can 
find extreme optimums with a fixed computational budget (500 function evaluations) when one 
of the butterflies is searching close to a globally optimum solution.  

Attention the evaluated control parameters of tab. 2 shows that the optimum values of 
X1 have been scattered around the negative values of 73 and the positive value of 71. Thus, BOA 
can provide several optimum designs around the global optimum solution, but a fair number of 
butterflies are required to search the solution space effectively. 

Table 2. Summary of the 20 runs for the evaluated minimum energy 
consumption and the corresponding optimum control parameters and 
computed optimized control parameter for the case of 50 butterflies

Iteration X1 X2 X3 X4 F(X)
1 81.0313 5.9 5.0906 0.3015 133.7106
2 72.8036 4.4463 5.0434 0.4478 135.5902
3 41.0096 5.1317 4.7833 0.3163 136.0182
4 -79.557 5.0035 5.9 0.2253 135.0829
5 55.2221 4.5243 5.9 0.3081 135.045
6 117.9513 5.2985 5.2293 0.3383 134.8482
7 68.0239 5.2554 5.2074 0.4543 134.3381
8 -91.421 5.423 5.2057 0.3059 134.9864
9 -67.7456 5.513 5.9 0.2 134.4673
10 -64.3242 5.5488 5.1517 0.3387 134.2285
11 116.7549 4.2869 5.7282 0.315 136.5988
12 -73.5582 5.749 5.3766 0.3805 133.8078
13 95.6658 5.4472 5.2204 0.5567 135.385
14 81.222 3.9183 5.5364 0.3712 136.661
15 88.7827 4.7042 4.6499 0.3383 136.2919
16 65.7765 5.264 5.9 0.5164 135.1603
17 64.8994 3.9095 5.1335 0.3816 136.6846
18 66.6978 5.6266 4.497 0.3727 134.4207
19 62.8762 5.3965 5.7805 0.3782 133.8415
20 70.3362 5.4645 5.6963 0.2775 133.5441

Figure 4. The impact of the number of 
butterflies on the evaluated minimum  
energy consumption F(X); the boxplots  
show the results of 20 repeated computations 
for each case
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Figure 5(a) illustrates the computed energy consumption of the office for the best and 
worth settings of BOA. The results are plotted against the literature investigations for various 
optimization problems of the same office building, as discussed by [32]. This figure shows that 
the badly tuned settings of BOA, i.e., five butterflies (Worst BOA), could produce out-of-range 
results. This is while the fine-tuned case of 50 butterflies (Best BOA) leads to fair results. Thus, 
using the correct number of butterflies to explore the search space is an essential task for ap-
plying BOA in building optimization. Moreover, BOA with 50 butterflies could provide a nice 
design divergency over possible solutions with small fluctuations around the global optimum 
solution. 

Figure 5(b) shows the energy consumption at various generations of the BOA for 
different initial butterflies. Since the total function evaluations were fixed at 500 evaluations, 
the increase of initial butterflies reduces the number of possible generations to cope with the 
function evaluation limit. As seen, the case of five butterflies generally could not find the glob-
al optimum solution. However, using 25 butterflies could find a fair optimum point with few 
generation evaluations. The case of using 50 butterflies not only find a good initial solution 
but also quickly drop the objective function the best minimum energy consumption. This is an 
interesting advantage of BOA, which tends to reach a converged solution quickly with a few 
generations. Hence, it can be concluded that a BOA with a fair number of butterflies could be 
applied for BOP efficiently. 

 
Figure 5. (a) The boxplots of literature studies for building energy minimization  
using various optimization approaches [32], and the results of the BOA; the boxplots  
are plotted for five butterflies (worst-case) and 50 butterflies (the best case), and  
(b) the convergence history of BOA based on the generation for various butterflies

The time history of function evaluations for two cases of five butterflies (worst set-
ting) and 50 butterflies (best setting) has been plotted in figs. 6(a) and 6(b), respectively. In both 
cases, there are butterflies that tend to find the best minimum energy consumption (minimum 
values) while there are also other butterflies that scouting for possible better solutions. In the 
case of five butterflies, fig. 6(a), the majority of function evaluations, F(X), are at the bottom of 
the figure, which shows that only a few butterflies were searching for a better optimum point 
while the others were following the best local optimum. In contrast, fig. 6(b) shows a fair dis-
tribution between the minimum points and maximum points. This means that there were a fair 
number of butterflies that could efficiently search the domain of solution for global optimum 
and help BOA to scape a local minimum.
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Figure 6. The convergence history of BOA based on the function evaluations for  
(a) five butterflies and (b) 50 butterflies

Conclusions

The BOA was coupled with the EnergyPlus software using and in-house coupling 
interface. Then the combination of BOA, EnergyPluse, and CI was used to minimize the annual 
energy consumption of an office building. The influence of BOA, the number of butterflies, 
was surveyed on the minimization performance of BOA. The outcomes reveal that recurring 50 
butterflies could result in the highest performance and fastest convergence while requiring five 
butterflies would significantly decline the BOA performance due to lack of exploration. The op-
timizations were repeated 20 times for each setting parameters, and the results were plotted as 
boxplots. The boxplots of the best and worst BOA settings were plotted along with the literature 
methods for a fixed computational budget of 500 OBJ function evaluations. 

The results show that using 15 butterflies or more could result in a reasonable op-
timum solution. A comparison of the results with the literature outcomes shows that BOA 
with 50 butterflies could provide a fair optimum outcome with a fixed computational budget. 
However, the BOA with few butterflies had a high tendency to be entrapped in local optima 
and fail to reach an excellent optimum solution. In addition, BOA could provide optimization 
results with a large diversity compared to literature works. Many optimal solutions around 
the global optimum solution could be advantageous in building designs as it provides design 
flexibility.

The search history of BOA in the form of optimum solution per generation and history 
of function evaluations demonstrate that BOA has a very high convergence rate, and hence, 
it could be much advantageous in the tasks with low computational budgets. For example, 
attention the function generation results shows that BOA could reach almost the same results 
with a few generations, and continuing the generations could not further reduce the energy 
consumption. 

Nomenclature
A	 – area, [m2]
Cp	 – specific heat capacity, [JKg–1K–1]
E(X)	 – annual lighting energy, [kWha–1]
F(X)	 – annual energy, [kWha–1]
k	 – thermal conductivity, [Wm–1K–1]
PEFi	 – energy factor, [–]
Qh	 – heating energy, [kWha–1]

Qc	 – cooling energy, [kWha–1]
T	 – node temperature, [K]
Δt	 – the calculation time step, [second]
X	 – optimization variable, [m, deg]
Δx	 – the finite difference layer thickness, [m]
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