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Heat and flow characteristics were investigated numerically for a laminar stream 
past two tandem circular cylinders placed in a channel. The blockage ratios 
( = D/H) were chosen to be 0.6, 0.7, and 0.8, respectively, and the gap between 
the cylinders was varied proportionally to the cylinder diameter as g = 0.2D, 
0.7D, 1.5D, and 4D at a low Reynolds number (Re = 40). The effects of the 
blockage ratio, as well as the gap between two cylinders on heat and flow fea-
tures were examined in detail. Shear stresses, dimensionless static pressure, heat 
transfer coefficient, and separation points from the cylinders were determined 
from the velocity and temperature fields in the flow domain. The results showed 
that the separation angle decreases with both the blockage ratio and the gap size 
on the downstream cylinder, whereas heat transfer increases with both the block-
age ratio and the gap size on the upstream cylinder.  
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Introduction  

The flow of matter passing through bluff bodies in a channel is important in terms of 

the variability of the thermal and flow parameters. The flow characteristics around bluff bod-

ies are encountered in many application areas [1-4]. Drag and drag reduction characteristics of 

these bodies were widely investigated by researchers in laminar flows [5-7]. Since the transfer 

processes are greatly affected by the flow structure around the bodies, many studies have fo-

cused on vortex shedding phenomena [8-10], instabilities and unsteady character of the flow 

[11-16] and vortex structure behind the bodies [17-20]. Some of these are also related to lam-

inar flow [21, 22].  

The flow around cylinders was numerically examined by Singha and Sinhamaha-

patra [23] for the values of Re = 40-150 and the gap g = 0.2-4D. It has been found that the 

flow rate and the blocking ratio significantly affect the separation point and the separation 

point goes backwards with the decrease in channel height. It has also been found that the 

change in channel height substantially affects the length of the recirculation zone. Kanaris et 
al. [24] examined the flow regimes by changing Reynolds number between 10 and 390 for the 

flow blocking ratio constant at 1/5. They observed that the flow regime passes from 2-D to  
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3-D flow regime between Re = 180-210 values. In addition, pressure coefficients and Strouhal 

numbers were calculated in this study.  

The flow around cylinders of different diameters and the effects of cylinder sizes 

have also been investigated in the literature. Igarashi [25] attempted to determine the flow fea-

tures around two cylinders with varying diameters by positioning the larger cylinder in front 

(big-small arrangement – BSA) for d/D = 0.68 and the cylinder spacing, L/D = 0.9-4. Flow 

characteristics and separation points were investigated by Alam and Zhou [26] for a stream 

around two cylinders with small-big arrangement, that is, the larger cylinder (D = 25 mm) at 

the rear and the front cylinder with d = 0.24D-1D. Gao et al. [27] studied the stability and un-

stable conditions for the flow around cylinders with dissimilar diameters designed in small-

big arrangement. The effects of initial perturbation and the angular velocity of the front cylin-

der were examined for the Reynolds number of 200. They also tried to determine the critical 

spacing between the cylinders. Gao et al. [27] also worked on the fluid behavior nearby a pair 

of cylinders of dissimilar diameters by particle image velocity method. The distance between 

the cylinders as L/D = 1.2 and d/D = 2/3 were taken for Re = 1200. Under these values, flow 

regime and vortex formations were observed. Jiang et al. [28] investigated the flow nearby 

cylinders in BSA between two parallel walls, by using Lattice-Boltzmann method. The ratio 

between the cylinder diameters varied from 0.5 to 0.875. The influences of Reynolds number, 

diameter ratio, the distance between cylinders, and blockage ratio on the flow field were ex-

amined in detail. Numerical results have also been obtained in small-big arrangement and un-

confined case.  

Some researchers have studied heat and mass transfer characteristics as well as flow 

characteristics around cylinders. The flow around the cylinders was solved numerically by 

Zhou et al. [29] for moderate Reynolds numbers. In case of small gap, there is a stagnant flow 

around both cylinders. Furthermore, periodic vortex formations were observed in the second 

cylinder. Numerical results were obtained in this study by changing the Reynolds values be-

tween Re = 80-320 and the gap from g = 2D to 8D. Lavasani et al. [30] experimentally exam-

ined the values of Nusselt numbers, drag coefficients, pressure coefficients for an isothermal 

cam-shaped tube under forced heat transfer for Re = 7.5 · 103-17.5 · 103 and blockage ratio of 

1.5 ≤ H/Deq ≤ 7. 

Heat transfer studies in the literature are not detailed and exhaustive in low Reynolds 

number flows. A lot of research has been done on flows with different Reynolds numbers 

around a single cylinder or a single body. However, there is a gap in the analysis of the flows 

around Re = 40 where the vortexes start. Also, flows between multiple cylinders and interac-

tions between cylinders have not been sufficiently studied. Hence, the novelty of this study is 

that the flow around tandem cylinders for Re = 40 was investigated at large blockage ratios and 

gap ratios between the cylinders. In this study, the effects of the gap ratio and blockage ratio on 

the flow structure, momentum, and heat transfer for Re = 40 are examined in detail by varying 

blocking ratio β = 0.8, 0.75, 0.7, 0.6 at different cylinder gap ratios g = 0.2D, 0.7D, 1.5D, 4D. 

Numerical method 

Additional instructions 

Basically, the continuity, momentum (Navier-Stokes equations) and energy equa-

tions need to be solved together with appropriate boundary conditions for the study of any 

flow. The conservation equations for the current study under the assumptions of steady, in-

compressible, and 2-D laminar channel flow are: 
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The pressure distribution on the body due to the fluid motion, the aerodynamic forc-

es, and vortex shedding in the wake of the body are all the aerodynamic characteristics.  

A cylinder with a circular cross-section whose geometry looks simple, exhibits a 

highly complicated flow behavior when exposed to a flow environment. The flow structure 

around such a bluff body varies as a function of Reynolds number: 

 Re
Ud Ud

v




   (5) 

which is a measure of the ratio of inertial forces to viscous forces. The viscous forces are the 

most important forces in the low Reynolds number flows and predominantly determine the 

fluid motion. There are certain flow-induced effects on bluff bodies in the flow field. These 

are the drag and lift forces acting on the object in the free flow direction and the perpendicular 

direction. Since the Reynolds number is quite low, the present study is mainly concerned with 

drag force. The resistance resulting from the viscous effects and the frictional forces is effec-

tive for the aerodynamic bodies such as aircraft wings, while the drag force due to the pres-

sure difference becomes important for the bluff bodies. 

The drag coefficient, CD, of a cylinder is determined from the drag force, FD, on the 

cylinder: 
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where A is the projected area and U – the upstream velocity. 

The pressure coefficient CP is determined from pressure distribution over the cylin-

ders: 
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where ρ is the density, P and Po are the static pressure on the cylinders and at the outlet, re-

spectively. 
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The Nusselt number is determined by: 

 Nu
hD

k
  (8) 

where D, h, and k are the diameters of the cylinders, convection coefficient, and conduction 

coefficient over the cylinders, respectively. 

Numerical analysis 

The detail of the geometry and boundary conditions are given in fig. 1. The circular 

cylinders are centered between the adiabatic side walls in a channel. The non-slip boundary 

condition (u = v = 0) was applied to the adiabatic channel walls and the walls of the cylinders. 

The surfaces of the cylinders and the inlet air are given at constant temperatures Ts and T∞, re-

spectively. 

 

Figure 1. The flow area around the circular cylinders and the reference axis 

The laminar air-flow was assumed as fully developed at the channel inlet and the 

parabolic velocity profile was used for the velocity inlet boundary condition. The UC is the 

axial velocity of the air at the channel center. The temperatures on the cylinders were kept 

constant at Ts = 293 K, and the air temperature at the inlet was T∞ = 333 K. Figure 1 also 

shows the positions of the back (downstream) and front (upstream) cylinders. The diameters 

of the cylinders were fixed to D = 0.04 m, the blocking ratios were taken as = D/H = 0.6, 

0.7, 0.75, 0.8, and the gap between the cylinders was selected as g = 0.2D, 0.7D, 1.0D, 1.5D, 

4D. The angular position around the 2-D circular cylinder is depicted by , fig. 1. Under these 

conditions, the conservation equations described above have been solved by means of the 

FLUENT software. The flow domain was discretized by hexahedra meshes and, a finer mesh 

was adopted around tandem cylinders comparing to the other region. Mesh independence 

study was carried out by creating meshes in different densities and number of nodes. The 

number of nodes 347250, 597104, and 786260 were tested. Since the changes in the results 

became negligible, the analyzes were continued with the number of 597104 nodes. The con-

vergence criterion was 1 · 10–7. 

Results and discussion 

Variation of separation angles with blockage ratio  

Separation angle, θs, indicates the angle of the separation point on the cylinder, 

measured from the x-axis, fig. 1. The separation angles were obtained for two different block-
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age ratios and compared with [23, 31]. Separation angle for the blockage ratio of = 0.6 was 

obtained as θs = 41.34° which is a very close value reported by Ozalp and Dincer [31]. When 

the blockage rate is reduced in the channel flow, in other words, when the channel height is 

increased, the separation angles increase on the upstream and the downstream cylinders. Ta-

ble 1 shows the separation angles for and a comparison with those given by Singha 

and Sinhamahapatra [23] over two cylinders with a distance g between them.  

Both the present study and Singha and Sinhamahapatra [23] show that a reduction in 

the blocking rate from 0.6 to 1/24, led to an increase in separation angle of about 28%. Alt-

hough Singha and Sinhamahapatra [23] observed a small effect of the second cylinder on the 

separation angle of the first cylinder, it remains unchanged for all g values studied in the pre-

sent work. A very high angle of separation on the first cylinder (the upstream cylinder) direct-

ly affected the flow over the downstream cylinder and caused a lower angle of separation on 

this cylinder. As the gap between the cylinders, g, grows, the separation angle on the second 

cylinder slightly decreases to a certain point and remains constant after that. The results show 

that the influence of the first cylinder on the second one is dying out when the gap between 

the two cylinders is more than 3D. A comparison of the separation angles on the second cyl-

inder shows that this study gives higher values for about 2% than the results stated by Singha 

and Sinhamahapatra [23] for the obstruction ratio of tab. 1 

Table. 1 Separation angles on the front, f, and back, b, cylinders for  

A parametric study was performed by 

altering the blockage ratio from 0.6 to 0.8, 

and the results are given in fig. 2. As can be 

understood from the figure, the separation 

angle on the upstream cylinder decreases as 

the blockage ratio rises, but it remains un-

changed with the gap size, g, for all the dis-

tances studied.  

On the downstream cylinder, the separa-

tion angle values are higher than those on the 

front cylinder due to the effect of the front 

cylinder. However, the separation angle on 

the back cylinder decreases to a certain point 

as the distance increases and then remains 

unchanged at the value of the separation angle on the front cylinder. That is, if the distance be-

tween the cylinders is higher than a specific amount, the separation angle on both cylinders 

equalizes. For example, the separation angle on the back cylinder decreases with the gap, start-

ing from 45° at g = 0.2D to 41.37° at g = 3D where θs-f = θs-b = 41.37° for 0.6. Similar be-

havior is also observed for the blockage ratios of 0.7 and 0.8 as can be seen in fig. 2. Therefore, 

g 0.2D 0.7D 1.0D 1.5D 3D 4D 

s-f 52.98 52.98 52.98 52.98 52.98 52.98 

s-b 42.82 40.64 39.91 38.46 37.74 37.74 

s-f [23]  51.5  51  52  53  53.5  53.5 

s-b [23]  42  40.5  39.5  38  37  37 

 

Figure 2. Separation angles on the front and back 

cylinders for blockage ratio = 0.6, 0.7, and 0.8  
(for color image see journal web site) 
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it is possible to say that the effect of the front cylinder on the back cylinder dies out at the gap 

size larger than 1.5D and 3D for the blockage ratios of 0.8 and 0.7, respectively. 

It is also confirmed from the temperature and velocity distributions around the cyl-

inders that the front cylinder does not affect the back cylinder if the gap is higher than a par-

ticular value which is g = 1.5D, and 3D for 0.6and respectively. This means that 

the downstream cylinder is acting as a single cylinder if the gap, g, is larger than 1.5D for 

andlarger than 3D for  = 0.6. As the blockage rate increases, in other words as 

the channel height decreases the separation angle decreases both on the front and back cyl-

inders. 

Pressure distributions on the cylinders 

The variations of pressure coefficient on the front and back cylinders in the direction 

of flow are investigated, and results are given in fig. 3. Higher pressure coefficient values 

were obtained on the upstream cylinder. These values decrease by about half on the second 

cylinder. As the block rate increases from 0.6 to 0.8, the pressure coefficient values in-

crease considerably on both cylinders. As can be seen from the figure, the pressure coefficient 

on the front cylinder is slightly influenced by the gap between the cylinders. This effect de-

creases with increasing blockage ratio. As the distance between the cylinders rises the pres- 

 

Figure 3. Pressure distributions on the front (a)-(c) and on the back (d)-(f) cylinders  

for   and 0.7, respectively (for color image see journal web site) 
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sure coefficient increases on the front cylinders. This increase is negligible for higher block-

age ratios. The maximum pressure coefficient appears in the stagnation point,  = 180, on the 

upstream cylinder as CP = 160 for g = 4D, and 0. 

Similarly, the blockage ratio affects the pressure coefficient on the back cylinder. 

The gap between the cylinders affects mainly the pressure coefficient in front of the second 

cylinder. The change in the pressure coefficient exhibits a double peak curve around  = 180. 

The effect of the gap decreases as the blockage ratio and the gap size increase. The 

downstream cylinder acts as a single cylinder when g > 3 that is the back cylinder is not 

influenced by the front cylinder, regardless of the block ratio. The pressure coefficient over 

the upstream cylinder changes between CP = 10 up to 28.5 for  0.6. These extremum values 

increase to the values of 23-57 and 70-162 as the blockage ratio increases from = 0.7 to 

 = 0.8, respectively. For the downstream cylinder, the distribution of pressure coefficient is 

between 0 and 17 for  0.6. As can be seen from fig. 3, CP changes from positive to 

negative values for both = 0.7 and 0.8 blockage ratios.  

Heat transfer 

Figure 4 shows the temperature contours in the flow field for all the cases studied. 

The temperature difference between the upstream and downstream sections increases with the 

blockage ratio, which demonstrates an increase in the total heat transfer rate. The mean 

temperature at the outlet is increasing with the blockage ratio while increasing with the gap. 

The effect of temperature variations produced by the front cylinder on the down stream 

cylinder dies out as the gap between the cylinders increases. Notably, for g = 3D and 4D val-

ues, the temperature field in front of the downstream cylinder becomes nearly uniform. For 

the other gaps between cylinders (g = 0.2D, 0.7D, 1D, 1.5D), the temperature change in the 

upstream cylinder affects the downstream cylinder. 

 

Figure 4. Temperature distribution around the cylinders for different gap size g = 0.2D, 0.7D, 1.5D, 3D,  
and 4D, respectively for blockage ratio; (a) (b)and (c)Re = 40  
(for color image see journal web site)

The temperature distributions around the upper and lower halves of the cylinders are 

symmetric and compatible with each other, due to the symmetry in geometry. The 

temperature between the two cylinders reaches 293, 303, 313, and 323 K for the gap values of 

0.2D, 0.7D, 1D, and 1.5D, respectively. The temperature domain of influence of the cylinders 
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also depends on the vortex structure. Therefore, the temperature variations around the cylin-

ders show similar patterns with the velocity fields and the circulation regions. 

As expected, the second cylinder leaves the domain of influence of the front cylinder 

as the gap increases. The increase in the blockage ratio draws this event to a shorter gap. 

Lower temperatures start to occur behind the downstream cylinder when the blockage ratio 

increases. As the channel height decreases, that is, as the blockage ratio increases, the temper-

ature between the cylinders decreases. For example, the temperature between two cylinders 

does not exceed 313 K for = 0.8, which is 323 K for  = 0.6. 

Numerical values of the Nusselt number were deduced from the numerical results. 

Figure 5 demonstrates the variation of local Nusselt numbers over two cylinders. At first 

glance, the most striking feature is that the gap between the cylinders does not affect the local 

Nusselt number around the front cylinder except near the rear stagnation point for higher 

blockage ratios. The channel height at  = 0.6 is higher than the other blockage ratios, and 

convection heat transfer on the upstream cylinder has been a lot more for smaller gap sizes. 

The local Nusselt number reaches up to 8.5 for the conditions of  = 0.6 and g = 0.2D, 0.7D, 

1D, 1.5D. As the gap increases (g = 3D and 4D) the front cylinder is not influenced by the 

back cylinder and acts as if it were a single cylinder. The maximum Nusselt number slightly 

increases with the blockage rate increases around the upstream cylinder. It reaches a 

maximum value of 11.5 by showing two peaks at about  = 100 and 260 for  = 0.8.  

In the back cylinder, the effect of the front cylinder can be clearly seen at each 

blockage ratio. The local Nusselt number varies between 0.5 and 5 which are lower compared 

to the upstream cylinder. Heat transfer is falling considerably around the front stagnation 

point,  = 180, when the gap decreases. However, a variation similar to the one in the front 

cylinder is observed in Nusselt number for g = 3D and 4D. 

 

Figure 5. Nusselt numbers distributions on the front cylinder (a)-(c) and on the back cylinder (d)-(f) for 
 = andrespectively (for color image see journal web site) 
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Average Nusselt number over the cylinders were calculated and presented in fig. 6. 

In general, the average Nusselt number increases with the blockage ratio on the upstream 

cylinder and decreases on the back cylinder. It is not possible to say the same change for the 

effects of the gap. The average Nusselt number increases asymptotically with the gap size 

over both cylinders. The asymptotic values are 5.41, 6.06, and 6.88 on the upstream cylinder, 

and 3.22, 2.92, and 2.28 on the downstream cylinder at  = 0.6, 0.7, and 0.8, respectively. 

These asymptotic values on the upstream cylinder are reached at the gaps of 3D, 1.5D, and 1D 

for  = 0.6, 0.7, and 0.8, respectively. However, the corresponding gap values are 4D, 4D, and 

3-D over the downstream cylinder. 

 

Figure 6. Variation of average Nusselt number vs. gap size; Re = 40  
(for color image see journal web site) 

Momentum transfer 

Analysis of the flow field reveals that the velocity contours are very similar to 

temperature contours, fig. 7. It is observed that separations occur on the cylinder walls and the 

size of the circulation zones changes with the gap between the cylinders. The back cylinder 

remains in the circulation zone behind the front cylinder for smaller gaps such as g = 0.2D, 

0.7D, 1D, 1.5D for  = 0.6. The flow behind the upstream cylinder is developing and 

becoming uniform as the gap increases, and the increase in the blockage ratio has an effect in 

favor of this uniformity. While the salvation distance of the downstream cylinder from the 

front vortex is 3D for  = 0.6, this value is 1.5D for the blockage rates of 0.8. 

Pressure drag coefficients of two cylinders were calculated using eq. (6). The drag 

coefficients are increasing with both the gap and blockage ratio, being significant with the lat-

ter. The drag coefficient of the front cylinder increases slightly with the gap up to 2% which is 

negligible. The increase in the drag coefficient of the back cylinder is more pronounced, espe-

cially at small gaps. The effect of the upstream cylinder on the drag coefficient of the down-
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stream cylinder is evident in small gaps. The drag coefficients of both cylinders increase con-

siderably with the blockage ratio. The asymptotic values of the drag coefficient of the back 

cylinder are 0.89, 1.86, and 5.28 for the blockage ratios of 0.6, 0.7, and 0.8, respectively. 

Those values for the upstream cylinders are 0.92, 1.92, and 5.48. 

 

Figure 7. Velocity contours around the cylinders at Re = 40, for blockage ratio  
(a) =  (b) = and (c) =  (for color image see journal web site)

Conclusion 

Flow and heat transfer parameters were studied numerically for a laminar flow 

around two cylinders in a channel by changing the blockage ratio and gap between the cylin-

ders. The blockage ratios and the gaps between the cylinders were selected as the values that 

were rarely studied in the literature. The followings can be drawn from the results: 

 A change in the gap between two cylinders does not affect the separation angle on the 

front cylinder. The same separation angle values are found at different gap sizes on the 

front cylinder. However, the separation from the wall on the upstream cylinder occurs 

earlier as the blockage rate decreases. The separation angle on the upstream cylinder 

changes from 41.37° to 37.01° when the blockage ratio increases from 0.6 to 0.8. The 

blockage ratio affects the separation on the downstream cylinder in the same way. 

Whereas, the separation angle on the downstream cylinder starts from a high value and 

decreases with the increase in the gap and reaches asymptotically to the separation angle 

on the upstream cylinder, regardless of the blocking rate. 

 Drag coefficients for both cylinders increase considerably with the blockage ratio provid-

ed that the drag coefficient of the front cylinder is less than that of the back cylinder. 

However, the drag coefficient of the downstream cylinder increases slightly with the gap, 

whereas it remains unchanged on the upstream cylinder.  

 Computational results also show that the blockage ratio and the gap between cylinders af-

fect the temperature field considerably around the cylinders and heat transfer. The effect 

of the gap size on the local Nusselt number around the upstream cylinder is significant at 

small block ratios. The local heat transfer around the downstream cylinder slightly de-

creases with the blockage ratio. Whereas, the local Nusselt number values increase with 

the gap size, especially in front of the downstream cylinder. 

 The average Nusselt number increases with the blockage ratio on the front cylinder and 

decreases on the back cylinder. However, the average Nusselt number increases 
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asymptotically with the gap size over both cylinders. The asymptotic values on the front 

cylinder are reached in shorter gap sizes. Increasing the blockage ratio helps to reach 

these values in shorter gap sizes for both cylinders. 

Nomenclature 

A –projected area, [m2] 
CD – drag coefficient, [–] 
CP – pressure coefficient, [–] 
D – diameter of the cylinders, [m] 
FD – drag force, [N]  
g – gap size, [m] 
h – convection coefficient, [Wm–2K–1] 
H – channel height, [m] 
k – thermal conductivity, [Wm–1K–1] 
L – space between the cylinder axis, [m] 
Nu – Nusselt number, [–] 
Re – Reynolds number, [–] 
P – pressure, [Pa] 
T – temperature, [C] 
u, v – velocity components, [ms–1] 
U – upstream velocity, [ms–1] 
UC – axial velocity at the center, [ms–1] 

Greek symbols 

α – correction energy factor, [–] 
β – blockage ratio, [–] 
θ – angular position of separation  point, [°] 
𝜌 – density, [kgm–3] 

Superscripts/subscripts 

av – average 
c – center  
d – downstream 
s – surface 
u – upstream 
o – outlet  
s-f – separation of front 
s-b – separation of back 
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