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In this paper, a numerical study is performed  in order to investigate the effect of 
the virtual viscosity on simulation of separated two-phase flow of gas-liquid. The 
governing equations solved by shock capturing method which can provide pre-
dicting the interface without the flow field solving. In this work, in order to calcu-
late the numerical flux term, first-order centered scheme (Force scheme) was ap-
plied cause of its accuracy and appropriate validation. Analysis approves that 
the obtained stability range of this research is consistent with the classic Kelvin-
Helmholtz instability equation only for the long wavelength with small amplitude. 
Results reveal that when the wavelengths are reduced, the specified range is not 
consistent and wavelength effects on instability range and it is overpredicted. An 
algorithm for water faucet problem was developed in FORTRAN language. Short 
wavelength perturbations induce unbounded growth rates and make it impossible 
to achieve converging solutions. The approach taken in this article has been to 
adding virtual viscosity as a CFD technique, is used to remedy this deficiency.  
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Introduction 

Two-phase flow of gas and liquid is simultaneous transmission of gas and liquid in 

an internal flow like a pipe or channel [1]. Choosing the optimal mathematical model accord-

ing to the limitations of available models is a fundamental challenge to predict flow dynamics 

[2, 3]. Because of the existence of the shape changeable interface and compressibility of the 

gas phase, separated two-phase flow of gas-liquid modeling is complicated [4]. This deforma-

bility causes the fluid properties to change in passing the interface discontinuously. In these 

problems, shock interactions that accounted as a discontinuity in fluid properties, and inter-

face as another discontinuity cause afflictions in simulating and instabilities capturing in the 

interface [5, 6]. There are two different types of formulations called mixed fluid model and 

separated two-fluid model [1, 7]. Mixed fluid model consists of a dispersed phase and a con-

tinuous phase. Mixed fluid models such as homogeneous equilibrium model (HEM) and drift 

flux model (DFM) are involved with fewer equations and describe the properties of mixtures 

such as momentum or energy [7]. This model is convenient for flows that phases are coupled 

strongly and the relative velocity between the phases is negligible [5]. The DFM compared to 

the HEM, the velocity difference between the phases is taken into account [8]. The second 
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formulation is the separated two-fluid model in which based on two types of conservation 

equations for each phase. In general, each phase has its own pressure, velocity, and tempera-

ture [9]. The two-fluid model is more suited for flows that phases are coupled together weakly 

and wave propagates in each phase at different velocities [9, 10]. This study has applicated 

and focused on two-fluid model as a desirable and comprehensive model. The 1-D form of 

this model was obtained from surface integration (area averaging) of the 3-D equations of flu-

id properties over a cross section of the flow [11]. Momentum transmission between the fluids 

and pipe wall, and also dynamic interactions of phases at the interface, is indicated as a source 

term and obtained from empirical relations [11, 12]. Various forms of two-fluid model have 

been developed according to the performance of phase pressures: pressure free model (PFM) 

that the pressure does not appear in the equations, single pressure model (SPM) which both of 

the phase pressures are equal, and two pressure model (TPM) that the phase pressures are dif-

ferent [6, 13-15]. 

A physical model should provide flow pattern predicting, limitations, and uncertain-

ties in the flow properties with precise numerical methods [16]. Widely researches have done 

in order to find an accepted criterion for the well-posedness of two fluid models [17]. A re-

view of previous researches shows that two-fluid models are sensitive to the roots of the char-

acteristic equation [7, 18]. The TPM is always hyperbolic and PFM and SPM are hyperbolic 

within a specified range [9, 11, 19]. One of the features of the TPM and SPM is the non-

conservative aspect of its governing equations and an additional method must be introduced 

for non-conservative term. The PFM equations are conservative but in order to determine 

well-posed range of the model, a hyperbolic analysis is required [20]. Hyperbolic analysis 

shows that ill-posedness is related to the unbounded growth of short wavelength perturbations 

[11, 21]. Surface tension which appears as a source term in the governing equations introduc-

es a cut-off wavelength. This is suitable for short wavelengths and on the contrary with long 

wavelength assumptions because of the wavelengths above the cut-off, experience illogical 

high growth rates [22]. The grid diffusivity was used to annihilate the growth of short wave-

lengths but the grid independence verification was not achieved for all the conditions [11]. 

Previous works reveal that when the wavelengths are reduced, the specified district 

is not consistent and wavelength effects on stability range and it is overpredicted [2, 10, 21]. 

In the present work an algorithm for water faucet problem which is a famous problem in mul-

tiphase flows, was developed and implemented in FORTRAN code. Short wavelength pertur-

bations induce unbounded growth rates and make it impossible to achieve converging solu-

tions. The approach taken in this article has been to adding virtual viscosity as a CFD tech-

nique, is used to remedy this deficiency. Virtual viscosity is introduced to damp the unbound-

ed growth of instabilities where the standard model is not well-posed. The present study aims 

to explore the possibility of mathematical regularization of a virtual viscosity in the governing 

equations. According to the non-physical nature of these instabilities, it seems that a mathe-

matical approach can lead to a convergent solution. A comparison of the numerical results 

with analytical results is done on a benchmark problem and it is showing a good agreement.  

Mathematical models 

In this paper, the SPM and the free pressure model have been chosen as the physical 

models. The present study is based on the transport equations for an isothermal flow and 

therefore consists of conservation of mass and momentum for the gas and liquid. Figure 1 il-

lustrates the schematic of the separated two phase flow in a pipe. The ak and uk are cross-

section area, and velocity. The si and sk are wetted perimeters of interface and each phase. The 
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τi and τk are the interface and phase-wall shear stresses, respectively (k = l, g, and i is defined 

as the liquid, gas, and interface notations). The hl and A are liquid height, and area of the 

whole cross section of the pipe.  

 

Figure 1. Schematic of the separated two phase flow of gas and liquid 

Single pressure model 

The governing equations on the SPM are included two series of continuity and mo-

mentum equations. Mass conservation equation: 

 ( ) ( ) 0t k k x k k ku    +  =  (1) 

Momentum conservation equation: 

 2 1 1( ) ( )    ( ) G sint k k k x k k k k i x k k k k k k i iu u P P s A s A          − − +  + =  − −  (2) 

where ρk, ak, and uk are density, cross-section area, and velocity (k = l, g, and i is defined as 

the liquid, gas, and interface notations), respectively, si and sk – the wetted perimeters of inter-

face and each phase, P and Pi – the phase and interface pressure, τi and τk – the interface and 

phase-wall shear stresses, respectively, G – the gravitational acceleration, hl – the liquid 

height,    – the pipe inclination (is required for inclined pipe), and A – the area of the whole 

cross section of the pipe (gas and liquid). In the SPM, the pressure of both phases is equal as 

well as the pressure of phases at the interface are the same. The + and – of the τISIA–1 is identi-

fied according to the flow direction as shown in fig. 1 

Free pressure model 

Free pressure model consists of a hybrid mass and a hybrid momentum equation. 

Hybrid mass conservation equation is obtained from summation of gas and liquid mass equa-

tions with the incompressibility assumption of the gas and liquid phases. 

Hybrid continuity equation: 

 l l g g l l l g g g( ) ( ) 0t x u u        + +  + =  (3) 

Hybrid momentum conservation equation is obtained from mixing (some mathemat-

ical operations) of gas and liquid momentum equations of the SPM:  

 

2 2
l l g g l l g g l

1 1 1 1
l g g g g l l l

( ) ( )0.5  0.5  Gcos  

Gsin ( )

t x

i i

u u u u h

a a s s a s a

     

    − − − −

 − +  − +  =

= − + + + −
 

(4)
 

where αl, αg, ug, and ul are unknowns in the FPM equations system. To find the primitive un-

knowns, eqs. (3) and (4) must be supplemented at least by two more equations. Since the flu-
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ids are assumed incompressible, algebraic constraint C(t), which is a known function of time 

dependent on the inlet boundary flow parameters is obtained [11, 16]: 

 l l g g l l g g l l g g inlet( 0    ( ) ( ))x u u u u C t u u      + = → + = = +  (5) 

Another relation is obtained from the geometric constraint: 

 1 1
l g g g l l g l, , 1a a A a A a A   − −+ = → = = + =  (6) 

Shear stress 

The shear stresses are illustrated in fig. 1 are comprised of wall-phase shear stresses 

and shear stress at the interface of gas and liquid. Distribution of them on the pipe wall has a 

vital role in determining the turbulence structure inside the pipe as well as the flow resistance 

[22, 23]: 

 0.5  k k k k kf u u =  

 g g0.5  i if u u u =   (7) 

where fk and fi represent phases and interface friction factors, respectively:  

 1 0.2max(16Re ,0.046Re )k k kf − −=  

 g   if f=  (8) 

in which hydraulic diameter Dhk is applied for calculation of Reynolds number Rek in each 

phase instead of inner diameter: 

 1 1 1
h l hl l l hg g g l Re     4 4 (, ),k k k kD u D a s D a s s − − −= = = +  (9) 

Geometric variables appearing to calculate the wetted perimeter of  each phase  can 

be found from previous works [18, 24].  

Hyperbolic analysis 

The present study does not intend to scrutinize the attainment methodologies of hy-

perbolic analysis and their validation. But the result of the present approach will affect the 

analysis and improve its stability range. Therefore, only the final results of the models used in 

this study are to be expressed. 

In general, there are two kinds of hyperbolic analysis methods depending on the 

presence/absence of conservative term in the governing equations [18]. To determine the sta-

bility range of interface waves, various relations are offered that based on classic Kelvin-

Helmholtz relation [10, 19, 25]. The SPM and PFM are sensitive depending on whether the 

characteristic values of governing equations are real or complex [11, 18]. Previous studies 

demonstrated these challenges directly related to the velocity difference between the phases:  

 g l g l l g
ll g

l

( ) G cos
d

d

a
u u K

a

h


    

 


−  +  (10) 

where ρk, ak, αk, and uk are density, cross-section area, phase volume fraction, and velocity  

(k = l, g is defined as the liquid, and gas), respectively, G – the gravitational acceleration,  
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hl – the liquid height, θ  – the pipe inclination, and a – the area of the whole cross-section of 

the pipe. If the relationship (10) is  not satisfied, the roots of the characteristic equation are im-

agined and the model is ill-posed and the interface is physically unstable as well. It means that 

limit of physical instability at the interface is equal to well-posing of model. Ill-posing causes 

that the results do not show realistic physics. In the above equation, coefficient, K, for the in-

viscid assumption is one, and for the viscous assumption K is obtained from results of previ-

ous works [11, 26]: 

 
2

V IV

g ll

ll g

1

G cos
d

d

( )C C
K

a

a

h






 

−
= −



−

 (11) 

where CIV and CV are critical wave velocities from the inviscid and viscous stability analyses, 

respectively, which is obtained from the equation suggested by the Barnea and Taitel [19].  

Virtual viscosity  

In the CFD, the words numerical dissipation/dispersion and virtual viscosity are fre-

quently used interchangeably and generally connote the diffusive behavior (which is purely 

numerical in origin) of a numerical solution. Numerical dissipation is a direct result of the 

even-order derivatives and numerical dispersion is a result of the odd-order derivatives of the 

governing equations [27, 28]. Although virtual viscosity decreases the accuracy of a solution, 

on the contrary, it increases the stability. Indeed, for many flow problems with strong gradi-

ents, such as shock waves, where shocks are captured within the flow by using a shock cap-

turing method, addition of virtual viscosity is an appropriate approach to achieve a stable and 

smooth solution, whereas without it, no solution would be attainable [27, 29]. Virtual viscosi-

ty which is the result of even-order derivative terms in the Taylor expansion, reduces strong 

gradients in the solution field and provides a convenient termination to the existing model in 

the short wavelength limit. In the present study, the matrix ε is added to the original equations 

as virtual viscosity. 

Numerical calculation methods 

The transport equations which were mentioned in section Mathematical models can 

be rewritten in a compact generic form: 

 [ ](Φ) Ψ(Φ) (Φ) (Φ)t x x  +  −  =  (12) 

where Φ,  ,  and Ψ  are, vector field of conservative variables, vector including all source 

terms, and conservative flux vector, respectively. The )Φ  (x contains all the non-con-

servative terms which present in the selected model. It is obvious that   determines the being 

conservative of the model:  

Generic form for SPM:  

 l l g g l g l g( , , , ) ( , , )Tu u u u    =  

 
2 2

g g l l l g g g g l l l lΨ(Φ) [     ]Tgu u u P u P         = + +  

 g g l l g g g l l lΦ( ) ][ Tu u        =  
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1 1 1 1
g g g g l l g g(Φ) 0 0 Gsin Gsin

T

i i i is A s A s A s A          − − − − = − − − − + −
 

 (13) 

 
l

l

00 0    0

00 0    0

/0 0 0
    

/0 ( )0 0

P

PP






 
 
 =
 
 
 −

 

where   and   are the vector of unknowns of the model and coefficient matrix of the non- 

-conservative vector, respectively. And also, generic form of PFM:  

  l l l l( , )
T

u u  =  

 
2 2

l l l g g g l l g g lΨ(Φ) 0.5  0.5  Gcos  
T

u u u u h        = + − + 
 

 

 l l g g l l g gΦ( )  
T

u u       = + −   (14) 

 
1 1 1 1

l g g g g l l l(Φ) 0 Gsin ( )  
T

i ia a s s a s a     − − − − = − + + + −
 

 

 0 =  

Discretization 

By applying the shock capturing method algorithm to discretize the generic form, a 

forward approximation is used for time derivative and central approximation is used for the 

local derivative Toro [30]: 

 1
1/2 1/2Φ ( ) ,Φ Γ(Ψ Ψ ) Φ   Γn n n n

j j j j x j

t
t t

x
 +

− +


= + − +   +  =


 (15) 

where n, n + 1, Δt, and Δx are the old time and new time values, time step, and mesh size, re-

spectively and j denotes cell position. The 1/2Ψn
j+ is a numerical flux that is an approximation 

of physical flux. Depending on the scheme that has been chosen for 1/2Ψ ,n
j+  various Riemann 

numerical solvers are achieved. In order to calculate the numerical flux term, first-order cen-

tred scheme (Force) was used. In this method, the flux term is calculated as following [7, 30]: 

 FORCE LF RI
1/2 1/2 1/2Ψ  0.5(Ψ  Ψ )j j j+ + += +  (16) 

where LF
1/2Ψ j+  and RI

1/2Ψ j+  are Lax-Friedrichs and Richtmyer methods. Richtmyer and Lax- 

-Friedrichs never used for practical applications. Richtmyer is dispersive and induces numeri-

cal spurious waves, and Lax-Friedrichs is diffusive and will damp most flow features [4]. To-

ro proposed a new first-order centered method to avoid the bad effects of Richtmyer and Lax-

Friedrichs methods. In Force method the intercell flux is an arithmetic mean of the Richtmyer 

and Lax-Friedrichs fluxes [30, 31]. Lax-Friedrichs method is a first-order scheme in time and 

space and numerical flux term is calculated by: 

 LF 1
1/2 1 1Ψ  0.5(Ψ  Ψ )  0.5Γ Φ Φ( )n n n n

j j j j j
−

+ + += + − −  (17) 
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Richtmyer method is an explicit and second-order in time and space which calculat-

ed in two steps: 

 1/2 1Φ 0.5(Φ Φ )n n n
j j j+ += +  

 1/2 1/2 1 1/2Φ Φ 0.5Γ(Ψ Ψ ) 0.5 (Φ )n n n n
j j j j jt+ + + += − − +   

 RI
1/2 1/2Ψ Ψ(Φ )j j+ +=  (18) 

In order to discretize the non-conservative term in eq. (12) (for SPM, particularly) a 

second order upwind discretization is used [7]:  

 1 1 1 1Φ min mod[2(Φ Φ )( ,0.5(Φ Φ ),2(Φ Φ )]
Δ

)

n
j n n n n n n

x j j j j j j
x


 + + − − = − − −   (19) 

The min-mod-2 in eq. (1) is defined: 

 
.min( , , )   if   sign( ) sign( ) sign( )

min mod( , , )
0                        othewise

S x y z x y z
x y z

 = =
= 


  (20) 

As discussed in the previous section, the present study focuses on the implementa-

tion of virtual viscosity to regulate instabilities. Simulation results in the next section demon-

strate that free pressure model is more convenient to use than the SPM, in terms of process 

time and implementation of numerical method in the benchmark problem. But this model still 

has spurious oscillations where severe gradients are founded. To solve this deviance, matrix ε 

is coupled with the original transport equation as a coefficient for second order derivative: 

 Φ Ψ Φ Φ (( ) [ ( )] ( ) ( ) Φ)t x xx   +  −   =  (21) 

In fact, this is  eq. (12) with a second order tensor has been added. But for the newly 

added part of the equation, a new method must be used. Non-conservative second order tensor 

of ( ) ( )Φ xx    complicates the solution which cannot be solved by the methods mentioned 

above. In the present study, equations are solved using an alternating two-step mathematical 

technique which consists of an implicit and a finite volume method that are coupled together 

strongly [32]. 

Step one: solving diffusion part of eq. (21) by an implicit method: 

 ( ) ( )t xx   =   (22) 

where it can be solved by  using an implicit method like Crank-Nicholson in step one such as 

[28]: 

 

1

1 1 1
1 1 1 12(

0.5 [( 2 ) ( 2
)

)]

n n
j j n n n n n n

j j j j j j
t x

  
     

+

+ + +
+ − + −

−
= − + + − +

 
 (23) 

Variables are calculated by integration on the first half-time at time step n. The out-

put data of this step is used as the input data of step two. 
Step two: solving advection-source term part of eq. (31) by an explicit method in 

step two: 
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 Φ Ψ( ) [ ( )]Φ (Φ)t x  +  =  (24) 

Updated variables are calculated by integration on the full-time step and output data 

of this step is used as the input data of step one but on the last half-time step at time step n. 

This alternating technique is a semi-implicit method and the time step must be controlled to 

achieve convergence results. 

Time step and boundary conditions 

The first step is an implicit method then is always stable. But the second step is ex-

plicit and the size of the time step needs to be controlled by [33]: 

 
,max

CF( ) Ln

n
c

x
t




 =  (25) 

where Δt, Δx, and CFL are the time step, mesh size, and Courante-Friedrichs-Levy number. In 

order to calculate time step in this paper, value of the Courante-Friedrichs-Levy number is as-

sumed 0.5 and ,max
n
c  is the maximum eigenvalue of the Jacobian of the eq. (25) which is 

equal to: 

  ,max max max   for  1,2, , 1, Neqn k
c j j j j M k = =  =  (26) 

where k
j  is wave velocity in each computational cell [18]. The schematic of the computing 

domain of an internal flow can be illustrated by fig. 2. Domain is discretized into M cells and 

special conditions are at the boundary positions x = 0 and x = L, where provide numerical 

fluxes 0.5Ψ  and 0.5ΨM +  to advance the extreme 

cells 1 and M to the next time level in eq. (15). 

For this purpose, an artificial grid will be con-

sidered at the input and output, and zeroth-order 

extrapolation for the virtual points will be used 

for the flux in entry and outlet which denoted 0 

and M + 1. 

Results and discussion 

In this section, the results of the simulation 

case are presented to demonstrate the conclu-

sions discussed. The aim is to substantiate that 

the addition of virtual viscosity renders it pos-

sible to have converging numerical solutions 

consistent with the long wavelength assumption 

also for flow conditions outside the classic Kel-

vin-Helmholtz criteria. For this purpose, the 

water faucet problem is used as a benchmark 

case to test the role of virtual viscosity in the 

well-posedness of two fluid models and stabil-

ity analysis. The schematic of the water faucet 

problem is illustrated in fig. 3 which comprised of a free fall of a column of water in a pipe 

where has a height of 12 meters and a diameter of 1 meter. At time t = 0 the velocity of water 

 

Figure 2. Schematic of the computational 

domain of an internal flow 

 

Figure 3. Schematic of the water faucet 
problem 
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is 10 m/s, velocity of air is 0 m/s, and the volume fraction of water is assumed 0.8. The pres-

sure in the pipe is equal to 105 Pas. Inlet conditions is equal to the initial values and for outlet 

of the pipe a fully developed condition is assumed. Density of air is 1.16 kg/m3 and density of 

water is considered 1000 kg/m3. In order to validate modeling accuracy, numerical method 

mentioned in the previous section is used for simulation and the results are compared with the 

analytical solution. Then the virtual viscosity is added and will investigate its effects on the 

well-posedness. 

Analytical solution 

Analytic solution of water faucet problem is extracted from Evje and Flatten [34]:  

 

inlet inlet
inlet 2l l
l

inlet 2
l l

inlet inlet 2
l l

   0.5G
, 2G

              0.

( )

G

)

5

(

u
x u t t

x t u x

x u t t








 +

= +


 +

 

 g l, 1 ( ,( ) )x t x t = −  

 
inlet 2 inlet 2
l l

l
inlet inlet 2
l l

( 2G     0.5G
,

G          0.

)

  5
( )

G

u x x u t t
u x t

u t x u t t

 +  +
= 

+  +

 (27) 

where αi, ui, and t are liquid volume fraction, liquid velocity, and time respectively. The axial 

coordinate is x, gravitational acceleration is G and superscript inlet is inlet notation of flow.  

Simulation results 

As pointed out earlier, we chose to present the results referring to two different types 

of two fluid models: SPM and PFM. All the simulations and algorithms are implemented in 

FORTRAN language and results are compared with the analytical solution. Figures 4 and 5 

show the liquid volume fraction and liquid velocity for different computational cells 100, 200,  

   

Figure 4. Water faucet problem (CFL = 0.5, computational time = 0.5 seconds); mesh refinement for  
(a) liquid volume fraction and (b) liquid velocity [ms–1], using the Force method (PFM) 
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400, and 800 using analytical solution and Force method. Figure 4 is based on PFM and fig. 5 

is based on SPM. The first step in assessing the quality of simulation is the independence of 

the computational cells and its convergence. Figure 6 shows diagrams of comparison of PFM, 

SPM, and analytical methods for computational cells 800. Although SPM Force method does 

not show dispersive behavior under the same conditions, but it has dissipative behavior in 

points wherein such strong gradients such as shock wave is existing. The processing time is 

another important criterion in  any simulation and it is obvious that a conservative form of a 

model takes less time than a non-conservative. According to the results and argument stated 

above PFM Force method is the best method for modeling this case study but to improve and 

eliminate its defection, a new solution must be found. Figure 7 indicates effects of adding vir-

tual viscosity to the original equations for water faucet problem for computational cells 850. 

Comparative diagrams is clearly indicating the effect of presence and absence of virtual vis-

cosity in the conservation equations. From fig. 7, it is evident that the simulation with virtual  

   

Figure 5. Water faucet problem (CFL = 0.5, computational time = 0.5 seconds); mesh refinement for  
(a) liquid volume fraction and (b) liquid velocity [ms–1], using the Force method (SPM) 

   
Figure 6. Water faucet problem (CFL = 0.5, computational time = 0.5 seconds); comparison of PFM, 
SPM, and analytical methods for computational cells 800; (a) liquid volume fraction and (b) liquid 
velocity [ms–1] 
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viscosity provides converging solutions as the grid is refined. In fig. 8, the liquid volume frac-

tion profiles are plotted for a selection of grid sizes for the simulations with and without virtu-

al viscosity. For the simulation containing virtual viscosity, the short wavelength perturba-

tions have damped while the larger wave grows softly and goes downstream. On the other 

hand, for the simulation without virtual viscosity, the short wavelength disturbances have 

grown severely  and create high-frequency and high-amplitude oscillations in the solution 

field, and therefore make it an ill-posed problem. 

   
Figure 7. Water faucet problem (CFL = 0.5, computational time = 0.5 seconds); comparison of presence 
and absence of virtual viscosity for (a) liquid volume fraction and (b) liquid velocity [ms–1]  
(CFL = 0.5, time = 0.5 seconds, cells = 850) 

   
Figure 8. Water faucet problem (CFL = 0.5, computational time = 0.5 seconds); mesh independence 
study for liquid volume fraction; (a) without virtual viscosity and (b) with virtual viscosity 

Conclusions 

It has been demonstrated that achieving the grid-independent solutions is very im-

portant in any numerical simulation. In this work, an algorithm for water faucet problem 

which is a famous problem in multiphase flows was developed and implemented in 

FORTRAN code. Results indicate that Force method is the most appropriate method for simu-

lating this benchmark case but the use of fine meshes would lead to the growth of non-

physical instabilities. The ill-posedness of the original model emanates from the extrapolation 
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of the long wavelength assumption into the short wavelength domain. Short wavelength per-

turbations induce unbounded growth rates and make it impossible to achieve converging nu-

merical solutions. The approach taken in this article has been to adding virtual viscosity as a 

CFD technique, is used to remedy this deficiency. Diagrams of liquid velocity and liquid vol-

ume fraction are compared for two conditions: with and without virtual viscosity. Results 

show that wavelengths below the specified cut-off are stabilized and converging solutions are 

achieved for flow conditions which were ill-posed without adding the virtual viscosity.  
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