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The thermal conductivity estimation for the soil is an important step for many
geothermal applications. But it is a difficult and complicated process since it in-
volves a variety of factors that have significant effects on the thermal conductivity
of soils such as soil moisture and granular structure. In this study, regression was
performed with the extreme gradient boosting algorithm to develop a model for es-
timating thermal conductivity value. The performance of the model was measured
on the unseen test data. As a result, the proposed algorithm reached 0.18 RMSE,
0.99 R’, and 3.18% MAE values which state that the algorithm is encouraging.
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Introduction

Conduction of heat transfer is the transfer of heat through matter by molecular excite-
ment within the material without bulk motion of the matter. The fundamental formula for the
conduction heat transfer is expressed in terms of heat transfer rate by heat conduction law, aka
Fourier’s law:

q=-kVT (1)

where k is material’s thermal conductivity and VT — the local temperature gradient. In other
words, the rate of heat transfer through a material is proportional to the temperature gradient
[1]. The thermal conductivity value & at the proportion is constant and unique for each material.
It determines the heat transfer in matters [2]. Thus, it is crucial to compute its value as accurate-
ly as possible, especially in geothermal applications. There has been a vast number of studies
on the prediction of k in various fields in the literature [3, 4].

Soil is a material and can be in solid, liquid, and gaseous stage. Its thermal conductivity
varies depending on its stage [5]. In other words, soil’s thermal connectivity is determined by the
contributions of the stages in which materials’ properties change, thus, its thermal conductivity
depends on the properties that change in time and space. Thus, the thermal conductivity itself is
a feature of the soil, and it varies depending on the mineral structure, texture, moisture content,
amount of organic matter, grain shape, thermal conductivity, and shape of the aggregates [6].

On the other hand, it is well known that large amounts of organic matter show low
thermal conductivity, so, sand soils’ thermal conductivity is higher than clay soils. Moreover,
heat transfer increases as the volume weight of the soil increases, and the porosity decreases.
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Thus, the thermal conductivity of dry soil increases with the addition of water to the soil, be-
cause liquids transmit heat easily according to air [7].

Knowing the thermal properties of the soil is of great importance for the research-
ers in soil science, and microclimate as well as in many areas of agricultural engineering.
Furthermore, the early growth and development of a crop can be largely determined by the
microclimate [8]. It is also important to estimate the thermal conductivity of the soil for geo-
thermal applications such as ground source heat pumps and borehole thermal energy storage
[9]. Thus, many researchers spent a considerable amount of time predicting soils’ thermal
conductivity. He et al. [10] developed a model for the prediction of soil conductivity from
matric potential. Usowicz et. al [11] analyzed soil water content and aggregation status in
soil thermal conductivity. Go et al. [12] proposed a new empirical model to estimate the
thermal conductivity that can be applied to unsaturated granite soils. In another study, He
et al. [13] presented a comparative analysis in which 20 models were evaluated to estimate
solid thermal conductivity. It is worth noting that, in general, but especially for soil, thermal
conductivity prediction is a difficult problem since many parameters affect the thermal con-
ductivity. Therefore, the majority of the prediction models have been developed for specific
soil types [14].

In this study, the gradient boosting regression method was employed to develop a
model for predicting the thermal conductivity of soils. The model uses soils’ dry density, po-
rosity, saturation degree, quartz content, sand content, and clay content as input and returns an
empirical coefficient as the output, an estimate to the thermal conductivity constant. Training
the model was repeated so that the optimum hyperparameters were determined, then regression
was performed. Error squared value R? for the model is 0.9943 in training data and 0.8067 in
test data.

Material and methods

Regression analysis is used to describe possible relationship between two or more vari-
ables. Regression shows the functional form of the linear relationship between two or more vari-
ables, but provides estimation about the other when the value of one of the variables is known
[15]. The data set used and the recommended regression model are explained in this section.

Dataset

In training the gradient boosting regression method based predictive model, the dataset
created by Zhang et al. [14] was used. The dataset contains 257 thermal conductivity measure-
ments collected from the studies by Chen [16], Zhang et al. [17], Tarnawski et al. [ 18], McCom-
bie et al. [19], Tarnawski et al. 20, 21], and Tokoro et al. [22]. Table 1 presents some statistical
outputs such as mean, standard deviation, minimum and maximum of each input values of dry
density, porosity, saturation degree, quartz content, sand content, clay content, and thermal con-
ductivity measurements in the dataset. These values belong to different type of soils.

Table 1. Some statistics for the dataset

k e k.
palgem™] Ul S mq ms me [Wm 'K '] [Wm—l‘K—l] [WmirlyK—l] K
Mean 1.44 0.46 | 033 | 0.61 | 0.62 | 0.09 1.17 1.95 0.24 3.24
Std 0.18 0.07 | 022 | 031 | 039 | 0.11 0.63 0.68 0.07 2.39
Min 0.98 0.35 | 0.04 | 0.00 | 0.00 | 0.00 0.10 0.39 0.09 0.20
Max 1.83 0.63 | 0.70 | 1.00 | 1.00 | 0.42 2.96 3.29 0.56 14.2
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Extreme gradient boosting (XGBoost)

Recall that boosting is an ensemble-based learning algorithm. It returns different
weights for training data distribution after each iteration. Every boosting iteration adds weight
to the miss classified error sample but subtracts from the correctly classified sample, so it effec-
tively changes the training data distribution [23]. On the other side, extreme gradient boosting
is a combination of gradient descent and boosting, named gradient boosting machine (GBM).
The GBM uses second order gradient statistics to minimize the optimization problem:

5(B) = D 1 Ver Vorea) + 2, Q(S1)
with i k

Q(f)=yT +%/1||w"2 )

where / is the loss function and Q — the regularization function. The loss function / is a differen-
tiable convex funaction and measures the difference between the prediction y,..q and the target
Ve Besides, the regularization function Q penalizes the complexity of the model. As a tree-
based algorithm, GBM is purposed to find the best candidate split points, which is non-trivial
for large dataset. Chen and Guestrin [24] purpose a novel distributed weighted quantile sketch
algorithm that can handle weighted data with a provable theoretical guarantee, resulting a new
scalable and efficient algorithm called extreme gradient boosting (XGBoost). The XGBoost is
also provided in many programming languages such as R and Python.

Model evaluation

In the implementation of the model, pq [gem™], n, S, mq, m, m. variables are accepted
as input parameters, while k empirical coefficient parameter is the output. In calculating empiri-
cal coefficient k, it was used two normalization formulas for thermal conductivity. One of these,
suggested by Johansen [25], states that the normalized thermal conductivity value &,:

oo Kk
"ok —k

sat dry

€)

where £ is thermal conductivity value, and &, and ky,, are soils’ saturated and dry values, respectively.
On the other hand, the second formula is given by Cote and Konrad [26] and says:
xS
k, =—-— Q)]
1+(k—1)S.
where S, is saturation degree.

Combining these two formulas yields the formula for :

(=S (k—k,,) “
Sr (k sat k )

Model performance is measured with root mean square error (RMSE), mean absolute
percentage error (MAPE), R?, Akaika information criterion corrected (AICc) and bayesian in-
formation criterion (BIC) metrics. Now, we briefly recall each of these metrics.

The MAPE is the average relative error and used to measure prediction accuracy in
various predictive methods, as in regression problems. The mathematical definition is given:

Yiwe ™ Vre

e (6)
y true

where yu, is the true value, y,..q — the predicted value, and n — the number of predictions.

MAPE = lzn:
noo




Yurttakal, A. H.: Extreme Gradient Boosting Regression Model for Soil Thermal ...
S4 THERMAL SCIENCE: Year 2021, Vol. 25, Special Issue 1, pp. S1-S7

The RMSE is the standard deviation of prediction errors and measures how spread out
these prediction errors are:

n 2

RMSE:\/%Z(}’M = Vpea) ()

t=1
The R? is the proportion of the variance in the dependent variable that is predictable
from the independent variables:

Z (ytruc - yprcd )2

[ ’
Z(ytrue _nzi_lytrueJ

R=1- (8)

i

The AICc is a statistical metric to compare the quality of statistical models to each
other. It takes each model under consideration, and rank them best to worst. In other words, it
relatively measures models trained on a dataset:

AICc =nlog [Z Piwe — ypmd)z] +2n, +——L— )

In the formula n,, n, is the number of parameters and sample size, respectively.

Finally, BIC is also used for model selection among a finite number of models. It
partially depends on the likelihood function. It is closely related to AICc. Its mathematical
definition is given:

BIC =n10g[ > (e = Ypea)” |+ 11, log(n) (10)

‘ Experimental results
dgem™] TR 0 030 | 056 [EEEN 0.49 .
= The proposed method was implemented

-041 -0.62 -055  in an open source Python environment. Figure

n  -0.98 puK
1, the correlation levels of the variables are giv-

-0.09 mu -0.16 -0.23 m -020  en. While there is a positive high correlation be-
tween quartz content and sand content, there is

-069 BN a negative high correlation between dry density

and porosity.
While 10% of the data set selected ran-

.m . domly is reserved for testing without being
m, 041 JPH -069 -087 KGN -054 . . . L

‘ included in the training, 80% of the remaining

« I 055 020 e parj[ is reserved for training and 20% for vali-

dation. After that, hyper parameter tuning was

digem™ n s omgom. o om. ok done. The optimum parameters of XGBoost al-
Figure 1. Variables correlation gorithms with LightGBM are given in tab. 2.
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m, EOEN -0.41 [-0.16

q
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Table 2. Optimum hyper-parameters

Hyper-parameters

n_estimators = 580, learning_rate = 0.03, num_iterations = 1000,

LightGBM boosting_type = ’dart’, min_data_in_leaf = 1, max_depth = 6, num_leaves = 32

learning_rate = 0.21, n_jobs = 4, n_estimators = 640, max_depth =5, min_child weight =5,

XGBoost subsample = 0.8, reg_alpha = 0.01, colsample bytree = 0.8, gamma = 0
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Figure 2. Regression-line; (a) LightGBM and (b) XGBoost

According to the optimum hyper parame-
ters obtained, fig. 2(a) shows the regression-line
obtained with the LightGBM algorithm, while
fig. 2(b) shows the regression-line obtained
with the XGBoost. It appears that the XGBoost
algorithm performs better in regression.

In fig. 3, the order of importance of fea-
tures in regression is given. In the regression
process, clay content, quarz content and satu-
ration degree parameters have more impact on
performance, respectively.

The metrics obtained according to the
training and test data are given in tab. 3. It
showed higher performance in XGBoost re-
gression process than LightGBM algorithm.

Table 3. Regression performance metrics

m,
m, (——
S, —
mx e
d [gem ] -u—
N je—
0.0 0.2 0.4 0.6 0.8 1.0

Feature contribution

Figure 3. Feature importance

LightGBM XGBoost
Train Set Test Set Train Set Test Set
RMSE 0.3073 1.0701 0.1811 0.9180
MAE [%] 7.40 24.94 3.18 26.90
R 0.9842 0.6052 0.9943 0.8067
AICc 885.078 146.796 743.069 154.334
BIC 864.048 134.826 722.039 142.365

Lu et al. [27], Barry et al. [28], and Cote and Konrad [24] made estimation analysis
on six different scenarios according to the value ranges of quarz content, sand content saturation
degree parameters. The proposed method made a regression considering all parameters with-
out considering the value ranges of the parameters. Zhang et al. [14] reached 941 AICc value
in its regression process considering all parameters, while the recommended method reached

743.069 AICc.

The study made important contributions to the literature. Regression was performed
with the XGBoost algorithm. The results were compared with the LightGBM algorithm. In the
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regression process, optimum parameters were determined by hyper tuning. The researchers
were given an idea about which parameters could be used. Input parameters affecting the most
regression were determined. Model performance was analyzed on unseen test data. Regression
was performed considering all input parameters. High performance metrics are achieved.

Conclusion

Throughout the study, we developed a predictive model for the thermal connectivity
constants for different types of soils. The model was built on the gradient boosting regression
method. The prediction is made by the features of dry density, porosity, saturation degree,
quartz content, sand content, and clay content. The model training was repeated by fine-tuning
hyperparameters until almost optimum hyperparameters were determined, then the regression
was applied. The XGBoost algorithm achieved 0.18 RMSE, 0.99 R2, 3.18% MAE on the train-
ing set with these calculated almost optimum parameters. Moreover, error squared value R? for
the model was 0.9943 in training data and 0.8067 in test data. The model received the best AICc
value of 743.069 in the literature.

Nomenclature
k — thermal conductivity, [Wm'K'] Greek symbol
ksy  — thermal conductivity of dry soil, [Wm'K™'] n ~ porosity
koo  — thermﬁl %?nductiviw of saturated soil, K — empirical coefficient
[Wm™K™] pa —dry density, [gem?]
m.  —clay content
m,  — quarz content Acronyms
ms  —sand content AICc — akaika information criterion corrected
S"z — saturation degree BIC - bayesian information criterion
R —Rsquared error MAE — mean absolute error
RMSE — root mean square error
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