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Discretization translates the continuous functions into discrete version making 
them more adaptable for numerical computation and application in applied math-
ematics and computer sciences. In this article, discrete analogues of a general-
ization method of generating a new family of distributions is provided. Several 
new discrete distributions are derived using the proposed methodology. A discrete 
Weibull-Geometric distribution is considered and various of its significant char-
acteristics including moment, survival function, reliability function, quantile func-
tion, and order statistics are discussed. The method of maximum likelihood and the 
method of moments are used to estimate the model parameters. The performance of 
the proposed model is probed through a real data set. A comparison of our model 
with some existing models is also given to demonstrate its efficiency. 
Key words: beta generated distributions, discrete analogue, method of moment, 

truncated distributio, T-X family of distributions

Introduction

 Generally, the data obtained from the real world phenomena are always discrete in 
nature even for the continuous variables e.g. computer databases. All actual sample spaces 
are discrete, and all observable random variables have discrete distributions. The continu-
ous distribution is a mathematical construction, suitable for mathematical treatment, but not 
practically observable [1]. Indeed, the continuous data can be modeled by using continuous 
distributions but it is difficult to derive their properties especially in case of complex systems. 
In this situation the discrete version of the underlying distribution is a more realistic approach to 
model and analyze the data. Out of several methods of discretization present in literature, some 
prominent work is referenced. Brasquemond and Gaudoin [2] give a detailed survey of discrete 
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distributions used in reliability of non-repairable discrete lifetimes systems. They segregate the 
discrete distributions into two families, one derived from the continuous distributions, and the 
other as Polya urn distributions. They also describe some norms for the selection of appropriate 
distribution for application among several given distributions. Dilip [3] follows the approach of 
discrete concentration set up discrete version of normal distribution. He proposes the expres-
sion of probability mass function (PMF) for discrete normal distribution:

( ) 1 ,    ..., 1,0,1,...,x xP x F F xµ µ
σ σ
+ − −   = − = −   

   
(1)

where F(.) is the cumulative distribution function (CDF) of normal variate. Dilip [4] defines the 
same technique to propose discrete Rayleigh distribution with PMF:

	
( )

2 2( 1)     0,1,...
0  otherwise

x x xP x θ θ + − == 


Inusah and Kozubowski [5] follow the same method as Kemp [6] to propose discrete analogues 
of Laplace distribution. As compared to discrete normal distribution proposed by [6] the expres-
sion for discrete Laplace distribution has closed-form for PMF, distribution function, mean and 
variance. Alzaatreh et al. [7, 8] extend the technique of generating continuous distribution and 
propose its discrete versions. In recent years, a lot of work is done on discrete random variable. 
For instance, Al-Masoud [9] uses difference of survival functions to construct discrete distri-
bution and introduces discrete modified Weibull extension, discrete modified Weibull Type-I 
and discrete modified Weibull Type-II distribution study the survival of lungs cancer patients. 
Almalki and Nadarajah [10] develop discrete analogue of reduced modified Weibull distribution 
and study its various characteristics. distributions. Nekoukhou and Bidram [11] present discrete 
exponentiated Weibull distribution and discuss its special cases. Hossain [12] establishes a gen-
eralized family of discrete distribution get a general expression of probability mass function 
which yields PMF for different factors. Alamatsaz et al. [13] propose a new discrete generalized 
Rayleigh distribution and use difference of survival functions to develop a discrete analogue of 
continuous distribution. Chakraborty [14] provides a detailed study on discretization of contin-
uous distributions. Chakraborty and Chakravarty [15] give a distribution having integer domain 
over (– ∞, ∞) as discrete analogue of logistic distribution. They discuss several statistical prop-
erties and derive discrete analogue of characterization result of continuous logistic distribution. 
Jayakumar and Babu [16] propose Weibull-Geometric distribution using conditional CDF and 
study its properties. They discuss discrete Weibull, discrete Rayleigh, and geometric distribu-
tions as special cases of their proposed distribution. Mazucheli et al. [17] establish two discrete 
anlogues of Shanker distribution, one by the method based os survival function and other by 
using the method of infinite series to model the over dispersed data. In literature, usually a con-
tinuous approximation of discrete distributions is used to fit the models, but in the last decade 
the researchers have preferred discrete analogue models to fit the discrete data. 

In our real life we come across many situations where we need to translate continuous 
outcomes into the discrete values. The continuous phenomena are sometimes difficult to be in-
terpreted, limited and concluded therefore, we discretize them into meaningful groups or levels. 
For instance, the data of GPS location can be better understood if it is discretized into cities, 
countries or states. Similarly the continuous features of neural networks, data miming and in-
formation theory based methods, etc. cannot be managed by machine learning until or unless 
they are discretized. This discretization not only helps to improve the performance of the con-
sidered method but also enhances its accuracy. In literature we see a considerable work on the 
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discretization of the continuous distributions [14]. We have develop a new method to generate 
families of continuous distribution, due to availability of closed form CDF we use it to develop 
the discrete analogues of the new family of distribution. By using this methodology the result-
ing discrete distribution is obtained as the combination of discrete distributions which certainly 
helps to model a variety of real life situations. We also explore various mathematical properties 
of the new proposed method which eases to study the characteristics of any mixed distributions. 
For illustrative purpose we develop a new discrete Weibull-Geometric distribution which is 
useful in lifetime data as well as medical and environmental data. The new composed discrete 
distribution has a closed CDF which makes it preferred to the other discrete distributions which 
do not have closed CDF. We expect that the new method of developing discrete distributions 
will prove a new dimension in research. 

Methodology

 If X is a discrete random variable with CDF F(x) and t be a continuous random vari-
able with PDF h(t) defined on any domain, then the CDF of truncated T-X family of distribu-
tions is given:

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )
1 d     

1 1

F x

a

H F x H a
G x h t t a x b

H H a H H a

  − = = −∞ ≤ ≤ ≤ ≤ ∞
− −∫ (2)

where h(.) and H(.) are PDF and CDF of r.v. t, respectively, while F(x) is CDF of input distri-
bution. The corresponding PDF is obtained:

( ) ( ) ( ) ( ) ( )1
1

g x h F x f x
H H a

 =  − (3)

For several choices of h(t) and F(x), one can easily generate new truncated continu-
ous distributions. On the parallel lines the discrete analogue of eq. (3) can be obtained using 
technique given:

( ) ( ) ( )1g x S x S x= − + (4)
The survival function:

	
( )

( ) ( )
( ) ( )

1
1

H H F x
S x

H H a

 −  =
−

Substituting the value of survival function in eq. (4) the PMF of discrete analogue of 
truncated distribution is given:

( )
( ) ( )

( ) ( )
1

1
H F x H F x

g x
H H a

   + −   =
−

(5)

The hazard rate of proposed model:

	
( )

( ) ( )
( ) ( )

1

1

H F x H F x
r x

H H F x

   + −   =
 −  

Several continuous truncated distribution can be generated by using the new method 
of generating generalized distribution. In tab. 1, some new discrete distributions are derived 
using the proposed methodology.
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Table 1. Some new discrete distributions 
F(x) 

H(t) 

  Geometric  Discrete Weibull  Discrete Burr 
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Truncated Weibull-Geometric distribution (TWG)

Let T be a continuous Weibull random variable with PDF:
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and X be a geometric random variable with PMF 1 – px+1, then the CDF of Weibull-Geometric 
distribution:

( )
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and PMF:
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 Let X be a discrete random variable distributed as TWG then the survival function and 
failure rate are given:
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respectively.

Quantile function

 The discrete TWG distribution is unimodal. Here we use the condition for unimodal-
ity of a probability function defined by [18]. Since the PMF in eq. (7) satisfies the log-concave 
inequality p2(x) ≥ p(x – 1) p(x + 1) for x = 0, 1, 2, ..., so the TWG distribution is a unimodal 
which can also be observed in fig. 1 as well. Failure function for several values of the parame-
ters can be seen in fig. 2. Let X  be discrete Weibull-Geometric random variable then the quan-
tile function is given:
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where 0 ≤ u ≤ 1. The median of TWG distribution can be obtained by substituting. 
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Figure 1. The PDF of the TWG distribution for several values of the parameters
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Figure 2. Plots of failure function for several values of the parameters

Moment

If X is distributed as TWG distribution then the rth moment:

 

( )
( ) ( )11 1

10

e e  

1 e

c cx x

c

p p

r r
r

r

E x x
γ γ

γ

µ

+   − −
   − −
   

∞       

 
−=  
 

−
= =

−

∑ (11)

Algebraic calculation of eq. (11) is arduous so we evaluate mean, variance, skewness 
and kurtosis numerically. Results are given in tabs. 2 and 3. 

Table 2. Mean and variance of TWG distribution for different values of parameters
  p = 0.5 

 c = 2  c = 5  c = 8 
 γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2

Mean  1.5631  1.4846  1.2716  0.4954  2.7796 2.7331  2.3505  0.3684  3.4191  3.4024  2.9645  0.3679 
Variance  2.5276 2.4165  2.0915  0.7125  3.1131  3.0596  2.5582  0.2337  3.2587  3.2404  2.6909  0.2325 

 p = 0.75 
 c = 2  c = 5  c = 8 

 γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2
Mean  4.3634  4.1829  3.6906 1.8443  7.1222 7.0239  6.2018  1.7033  8.4906  8.4580  7.5814  1.7463 

Variance  12.8172  12.3028  10.7698 3.9248  14.8792  14.6494  12.4644  0.5587  15.3242 15.2411  12.8154  0.2791 
 p = 0.90 

 c = 2  c = 5  c = 8 
 γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2  γ = 0.5  γ = 1  γ = 1.5  γ = 2

Mean  7.4186  7.3617  7.1398  5.2403  7.5284  7.6529  8.6017  5.5155  5.9839  6.0417  7.6003  5.6224 
Variance  35.1816  33.9612  30.6275  16.6256  54.2988  53.7978  47.8636  3.6299  59.7183  59.8724  60.8869  1.6105 
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Table 3. Skewness and kurtosis for of TWG distribution for different values of parameters
 p = 0.5 p = 0.75 p = 0.9

γ  c  Skewness  Kurtosis  Skewness  Kurtosis  Skewness  Kurtosis 
0.5  2  2.0064  5.1654  1.7293  3.6029  1.4825  2.3921 

 5  1.5274  2.8238  1.3642  2.1182  1.4950  2.3362 
 8  1.3936 2.2861  1.2650  1.7740  1.7007  2.9779 

1  2  2.0527 5.4408  1.7625  3.7659  1.4853  2.4089 
 5  1.5366  2.8657  1.3706  2.1434  1.4813  2.2950 
 8  1.3955  2.2944  1.2662  1.7788  1.6922  2.9483 

1.5  2  2.1959  6.3492  1.8630  4.2905  1.4987  2.4775 
 5  1.6154 3.2496  1.4240  2.3692  1.3838  2.0148 
 8  1.4452  2.5161  1.2984  1.9086  1.4983  2.3177 

2  2  3.1067  14.6030  2.3814  8.1105  1.6503  3.2137 
 5  1.6543  1.7569  1.2266  1.4078  1.1567  1.4161 
 8  1.6487  1.7182  1.1097  1.0152  1.0684  1.1543 

Distribution of range

The distribution of range given:
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Parameter estimation

In this section, point estimation of the parameters is discussed on the basis of observed 
random sample X = (x1, x2,... xn) of size n. The method of moments and maximum likelihood 
estimation are used for this purpose. 

Method of moments

In this method, the parameter estimates are achieved by solving E(x) = µ1 = m1,  
E(x2) = µ2 = m2, and E(x3) = µ3 = m3, for c, γ, and p. Where m1, m2, and m3 are first, second, and 
third sample moments: 

	
1 .

r
i

i
r

n
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Since it is not possible to solve them analytically therefore, we solve them numerical-
ly by minimizing the quadratic loss function with respect to c, γ, and p:
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We utilize the functions nlm, optim, and solnp in R environment for the computation. 

Method of maximum likelihood estimation 

Let a random sample of size n is selected from TWG distribution and the observed 
frequencies are denoted by nx, x = 1, 2,..., k where ∑k

x=1nx = n, then log-likelihood function is 
given:
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To find maximum likelihood estimates of parameters in model, we differentiate  
eq. (14) with respect to p, c, and γ and obtain:
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where w = (1 – p)/γ, v = (1 – px)/γ, and z = (1 – px+1)/γ, the aforementioned equations should be 
set to zero and solved simultaneously. Since these equations are non-linear equations therefor 
some numerical methods are required to solve them.

Simulation study

In this section, we discuss a simulation study to analyze the effectiveness of the meth-
od of maximum likelihood for the estimation of model parameters. For this, we use the inver-
sion method to 10000 random samples. Different samples of sizes 50, 250, 500, and 1000 are 
selected randomly. Table 4 provides means and MSE for TWG distribution for different sample 
sizes and several combinations of the parameters. It is observed from tab. 4 that estimated val-
ues of the parameters become closer to their actual values as the sample size increases. This 
behavior indicates that the maximum likelihood method is suitable for the estimation of model 
parameters.

Application

In this section, a numerical study is conducted using real-life data from the field of 
medical sciences. The data set, considered in this example, comprises of tallies of cysts of 
kidneys utilizing steroids. This data, also used by [19], was initially collected by [20] during 
an investigation study the impact of a corticosteroid on cyst formation in mice fetuses in the 
department of nephro-urology at the institute of child health of University College London. In 
their study embryonic mouse kidneys were observed, and a random sample of size 110 was 
exposed to steroids. We apply our proposed model on this data to check the goodness of fit 
and compare the results with those of discrete Lomax, discrete Burr distribution, zero inflated 
poisson distribution, poisson distribution, discrete Rayleigh distribution, and geometric distri-
butions. Table 5 represents the observed frequencies of our proposed model along with those of 
the models in comparison. 

Table 6 exhibits the estimated values of the model parameters by using the method 
of maximum likelihood estimation and the method of moments. The standard errors of the 
maximum likelihood estimates are also given in parentheses. Moreover negative log-likelihood 
(𝓁), Akaike information criterion (AIC), and Bayesian information criterion (BIC) are used for 
comparison purpose. Table 7 shows that TWG distribution has the lowest negative log-likeli-
hood, AIC, and BIC which indicates better performance of the proposed model than that of the 
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other distributions. Figure 3 is the the graphical demonstration of the fitting of the density and 
distribution function of the proposed model on the data set. From this figure, we can see that the 
TWG distribution fits adequately to this data set.

Table 4. Simulation study for the TWG distribution
 Mean MSE

Actual values  Actual values
c p γ c p γ

n 0.5  2 2.5 0.5 2 2.5
c^ p^ γ^ c^ p^ γ^

 0.5149  2.0259  2.5371 0.0175  0.0448  0.0587
 0.5033  2.0080  2.5090  0.0056  0.0356  0.0284
0.5022  2.0046 2.5062  0.0059  0.0247  0.0307
0.5014  2.0024 2.5025  0.0071  0.0189 0.0105

 Actual values  Actual values
c p γ c p γ

n 1  1.5 2 1 1.5 2
 c^ p^ γ^  c^ p^ γ^

 1.0198  1.5193 2.0369 0.0361  0.0420 0.0578
 1.0053  1.5075  2.0095  0.0207  0.0248  0.0289
1.0024 1.5041 2.0059 0.0093 0.0151  0.0320
 1.0013  1.5020  2.0033  0.0059  0.0125  0.0183

Actual Values  Actual Values
c p γ c p γ

n 2  0.5 1 2 0.5 1
c^ p^ γ^ c^ p^ γ^

 2.0165  0.5371 1.0405  0.0197 0.0850 0.0688
 2.0052  0.5063  1.0098 0.0186 0.0141 0.0497
2.0032 0.5041  1.0061 0.0182 0.0169 0.0362
 2.0014  0.5024 1.0029 0.0076 0.0146  0.0162

Table 5. Goodness of fit

X Observed Discrete
TWG DBD-XII Discrete

Lomax ZIP Poisson Discrete
Raleigh Geometric 

0  65 64.76 63.32  61.89  64.92  27.4  11  45.98
1  14  15.46 18.19  21.01  5.82  38.08 26.83  26.76 
2  10 9.02 9.29  9.65  9.52  26.47  29.55  15.57 

 ≤4  10 9.96 9.01 8.41 18.86 16.52 34.72 14.34 
>4  11 10.78 10.19 9.03 10.87 1.51 7.9 7.36

Table 6. Estimated parameters of the TWG distribution by the 
method of maximum likelihood and the method of moments

Parameter  ML estimates (std. error)  MM estimate
γ  3.7558(12.4355) 3.1094
c  0.4589(0.13409) 0.1545
p 0.75896(0.04869) 0.8106
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Table 7. Estimated values of 𝓁, AIC, and BIC for TWG distribution and for the models in comparison

Criterion Discrete
TWG DBD-XII Discrete

Lomax ZIP Poisson Discrete
Raleigh Geometric 

𝓁 167.2239 170.4806 168.7708 182.2449 246.21  277.778  178.7667 
AIC 340.4479  344.9612  343.5415  368.4897 494.42  557.556  359.5333 
BIC 348.5493 350.3622  351.6429  373.8907  497.1205  560.2565  362.2338 

Conclusion

Despite the fact that contin-
uous distributions have been used 
for modelling continuous data quite 
effectively and it has been easy to 
study their distributional properties 
but for complex situations it is diffi-
cult to study the properties of contin-
uous distributions. In this situation 
discrete analogues of the continuous 
distributions not only explain dis-
tributional properties but also help 
in developing discrete models. The 
contribution of the present research 
is to provide discretization of the 
method of generating an expanded 
family of distributions. We construct a new discret TWG distribution by using the proposed 
method and study several of its properties. The closed form of the TWG distribution discloses 
the scope of its application in different areas of mathematical statistics. The shapes of hazard 
rate function such as decreasing and inverse bathtub show its usefulness in different situations. 
The findings of the simulation study reveal that the parameters estimates of the TWG distribu-
tion become closer to the true values whereas the standard errors decrease as the sample sizes 
increase which show the stability of the model. In the illustrative example, the model parame-
ters estimated by the method of moments and by the method of maximum likelihood estimation 
have close values which show the adequacy of the model. The values of negative log-likeli-
hood, AIC and BIC provide enough evidence for the better performance of TWG distribution 
when compared with some contemporary models. We hope by using the proposed discretized 
method several useful discrete models can be developed to handle the complex situations. 
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