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A lot of problems of the physical world can be modeled by non-linear ODE with 
their initial and boundary conditions. Especially higher order differential equa-
tions play a vital role in this process. The method for solution and its effectiveness 
are as important as the modelling. In this paper, on the basis of reproducing ker-
nel theory, the reproducing kernel functions have been obtained for solving some 
non-linear higher order differential equations. Additionally, for each problem the 
homogenizing transforms have been obtained. 
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hilbert spaces 

Introduction

In the universe, there are countless phonemes waiting to be understood. In order to 
understand these phonemes, it is necessary to model them first. At this point, non-linear ODE 
(NODE) arise as an indispensable tool for modelling. It appears in two form: initial value prob-
lem (IVP) and boundary value problem (BVP). In a big variety of fields such as engineering, 
biology, astronomy, fluid dynamics, economics, physics, electric circuits, control theory and so 
on, higher order BVP and IVP have an important role. So, this study will be focused on some 
kind of higher order boundary and initial value problems.

Many approaches have been used and there have been lots of efforts for solving 
non-linear higher order ODE in researches. For instance, Abbasbandy [1] used homotopy per-
turbation method to investigate quadratic Riccati differential equations. Adomian [2] imple-
mented Adomian decomposition method to stochastic operator equations. Dascioglu and Yaslan 
[3] derived Chebyshev collocation method for the solution of high-order NODE by Chebyshev 
series. Ozturk and Gulsu [4] reported improved collocation method. Also Wazwaz [5] used 
Adomian decomposition method for solving initial value problems in second-order ordinary 
differential equations. Lu et al. [6] used a method based on least squares support vector ma-
chines. Furthermore Runge-Kutta method [7-9], predictor-corrector method [10, 11], decom-
position method [12], direct block method [13], linearization method [14] have been used for 
solving IVP and BVP. For a further reading see [10, 15-17].
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The reproducing kernel method (RKM) have been used as an efficient way to solve 
different types of differential equations by many researcher for years. The reproducing kernel 
functions are the basis of this method to approach the solution. The initial establish of the gen-
eral theory of RKM was begin with the research of Aronszajn and Bergman [18, 19]. Since the 
method is very effective, many researcher applied the method to the several kind of problems. 
For instance Cui et al. [20] published a book about numerical analysis in the reproducing ker-
nel space which is a comprehensive study. Syam et al. [21] used the method to solve a class 
of fractional Sturm-Liouville eigenvalue problems. Jiang and Tian [22] reported the Volterra 
integro-differential equations of fractional order by the RKM. Li et al. [23] applied the method 
for numerical solutions of fractional Riccati differential equations. For more details see [24-28].

In this article, we aim to get appropriate reproducing kernel functions for some higher 
order non-linear differential equations:

	
( ) [ ]d , , , ,    2

d

M

M
y u x y x a c M

x
= ∈ ≥

Preliminaries

We consider:

( ) [ ]d , ,    , ,    2
d

M

M
u h t u t a c M

t
= ∈ ≥ (1)

Second order NODE for initial value problems

We consider:

( ) [ ]
2

2
d , ,   ,
d

u h t u t a c
t

= ∈ (2)

with initial conditions

	 ( ) ( )0 1,   u a p u a p′= =

Second order NODE for boundary value problems

We consider:

( ) [ ]
2

2
d , ,   ,
d

y u x y x a c
x

= ∈ (3)

with boundary conditions

	 ( ) ( )0 0,   u a p u c q= =  

The Mth order NODE for IVP

Consider the following Mth order NODE for IVP:
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Construction of reproducing kernel functions

In order to solve the problem (1) using RKM, we first construct reproducing kernel 
Hilbert spaces. In this section we present some essentials and results in the reproducing kernel 
theory. Let we start with some basic definitions which play a very important role in the study 
of proposed method.

Definition 1. (Reproducing kernel). Let E be a non-empty set. A function  
R : E × E → C is called a reproducing kernel of the Hilbert space H if and only if:

	 ( )( ) , ,  a R x H x E⋅ ∈ ∀ ∈

	 ( ) ( )( ) , ,b R x xψ ψ〈 ⋅ 〉 =

The item (b) is called reproducing property of kernel R. The value of the function ψ at 
the point x is reproduced by the inner product of ψ with R(⋅, x). 

Lemma 1. If a Hilbert space has a reproducing kernel, it is called a reproducing kernel 
Hilbert space (RKHS). 

Definition 2. [20] The space V 2m[a, b] consist of the functions u:[a, b] →R and define: 

	
[ ] ( ) ( ) ( ) [ ] ( ) ( ) [ ] [ ]{ }1 2

2 , | , ,    , ,    ,m mmV a b u x u x AC a b u x L a b x a b−= ∈ ∈ ∈

V 2m[a, b] equipped with the inner product:

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

02

, d
bm

i i m m
mV

i a

u v u a v a u x v x x
−

=

< > = +∑ ∫
Here we denote the vector space of absolutely continuous (real-valued) functions with 

AC[a, b] and the quadratically integrable functions on the interval [a, b] with L2[a, b].
Lemma 2 [20]. The V 2m[a, b] function space is a reproducing kernel space. 

 We now give some special reproducing kernel spaces which will be using in the solu-
tion of the implements in section Illustrative examples.

The V 23[1, 2] reproducing kernel space 

Let we define a function space
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We use integration by parts and obtain:
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We have Ry(1) = 0 = Ry(2) by the conditions. Therefore, we get:
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 If we have the following equations:
	 1. ( ) ( ) ( )41 1 0y yR R′ + = 		  3. ( ) ( )3 2 0yR =

	 2. ( ) ( )1 1 0y yR R′′ ′′′− = 		  4. ( ) ( )4 2 0yR =
we will get:
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Note that property of the reproducing kernel is:
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thus we reach
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This gives us the Dirac-Delta function:

	
( ) ( ) ( )6 dyR x x x yδ− = −

When x ≠ y, we get:
	 Ry

(6)(x) = 0
therefore we obtain the reproducing kernel function Ry:
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There are twelve unknown coefficients. So we need twelve equations to find these 

unknown coefficients. By Dirac-Delta function: 
5. ( ) ( )y yR y R y+ −= 		  8.  ( ) ( )''' '''

y yR y R y+ −=

6. ( ) ( )y yR y R y+ −′ ′= 		  9. ( ) ( ) ( ) ( )4 4
y y

R y R y+ −=

7. ( ) ( )y yR y R y+ −′′ ′′= 		  10. ( ) ( ) ( ) ( )5 5
y y

R y R y+ −

We have the following equations: 
	 11. ( )1 0yR =

	 12. ( )2 0yR =
So we have twelve unknown coefficients and twelve equations. If we solve these 

equations, we get the reproducing kernel function for x ≤ y:
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The V 24[1, 0.5] reproducing kernel space

Let we define a function space:
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Integrating this equation by parts for four times:
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We have the following equations:
	 1. Ry(0) = 0

	 2. R′y(0) = 0
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Therefore, we obtain:
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then we will get
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by the reproducing property. Thus, we reach:

	
( ) ( ) ( ) ( )

0.5
8

0

dyu x R x x u y=∫
The aforementioned equation will give us the Dirac-Delta function. Then, we have:
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 When x ≠ y, we obtain the reproducing kernel function Ry:
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Since there are sixteen unknown coefficients, the same number equations is needed to 
find them. By the properties of Dirac-Delta function, we have: 
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If we solve the aforementioned equations then we get the reproducing kernel function 
for x ≤ y: 
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Illustrative examples

We consider the following problems:
Example 1. We take into consideration [6]: 
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2 3 2
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with boundary conditions
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In order to apply the RKM we need to homogenize the boundary conditions. There-
fore, we use:

	
( ) ( ) ( )1 2

3
u x y x x= − +

Then we obtain:
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 We use the previous equations and get:
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Example 2. We take into consideration [6]
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y y x
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with initial conditions y(0) =1, y ′(0) = –1. We use the following transformation homogenize the 
initial conditions:

 	 ( ) ( ) 1v x y x x= + −

Then we get: 
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If we use the aforementioned equations, we will obtain:

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

3

3

33 2 2
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2 3 1 3 (1 ) 1
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v x x

v x v x v x x x

 = − + 

 = + − 
 = + − + − + −  

(12)

By that we obtain:
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Therefore, the problem coverts to homogeneous form:
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Example 3. We consider [6]:

( ) ( ) [ ]
3

2 2
3

d cos sin ,    0,0.5
d

y y x x x
x

= − − + ∈ (13)

with the initial conditions y(0) =0, y ′(0) = 1, y″(0) =0. 
Similar to before examples, we will be using a transformation homogenize the initial 

conditions. For this problem we use the transformation:

	 ( ) ( )v x y x x= −  
By calculating the derivatives we get:
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 If we put the aforementioned equations into the problem we arrive to:
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 Thus, our problem turns into the form which is homogeneous:
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Example 4. Let us consider the problem [6]:

[ ]
2

3
2

d ,    0,1
d

y y y x
x

= + ∈ (14)

subject to boundary conditions y(0) = 0, y(1) = 1. 
In order to transform the non-homogeneous differential equation the homogeneous 

one, we use the transformation:

	 ( ) ( )v x y x x= −
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 By using that, we get:
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If we use the aforementioned equations, we obtain:
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Thus, we reach:
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Conclusion

In this article we obtained the reproducing kernel functions for solving some non-lin-
ear higher order differential equations. We obtained homogenizing transforms for the non-linear 
ordinary differential equations. These transforms are interesting and essential to apply the re-
producing kernel Hilbert space method. Therefore, it will be very useful for researchers.
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