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In this paper, we present the fractional motion equations and fractional non-No-
ether symmetries of Lagrangian systems with the conformable fractional deriva-
tives. The exchanging relationship between isochronous variation and fractional 
derivative, and the fractional Hamilton’s principle of the holonomic conservative 
and non-conservative systems under the conformable fractional derivative are pro-
posed. Then the fractional motion equations of these systems based on the Hamil-
ton’s principle are established. The fractional Euler operator, the definition of frac-
tional non-Noether symmetries, non-Noether theorem, and Hojman’s conserved 
quantities for the Lagrangian systems are obtained with conformable fractional 
derivative. An example is given to illustrate the results. 
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Lagrangian system 

Introduction

The role of symmetry is one of the most prominent attributes in physics, life sciences 
and engineering technology, etc. [1, 2]. Noether symmetry, Lie symmetry, and Mei symmetry 
have been well applied to study dynamical systems in mathematical physics. In 1992, a theorem 
concerning the conserved quantities for second-order dynamical systems has been derived by 
Hojman [3], which showed that the conserved quantity could be constructed in terms of the 
symmetry transformation vector of the equations of motion only, without using either Lagrang-
ian or Hamiltonian structures. Later in 1994 the geometrical basis of this conservation law was 
presented by Gonzalez-Gascon in [4]. 

The symmetries, conservation laws and bifurcation at al of non-linear differential 
equations in mathematical physics have been paid much attentions [5-20]. Lately, Cai et al. [6] 
has studied the non-Noether conserved quantities for holonomic mechanical system. Fu et al. 
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[7] and Fu and Chen [8, 9] developed a new non-Noether conserved quantity for non-conser-
vative dynamical systems. Subsequently, the symmetries of fractional derivative have attracted 
the attention of lots of researchers. Zhou et al. [10] presented the symmetry theories of Ham-
iltonian systems with Riemann-Liouville fractional derivatives. Zhang et al. [11] investigated 
the Hamilton formalism and Noether symmetry for mechanic-electrical systems with fractional 
derivatives while Sun et al. [12] developed a Lie symmetry theorem of fractional non-holonom-
ic systems. Wang and Fu [13] studied fractional cyclic integrals and fractional Lagrange system 
and non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives. 
Fu et al. [14] derived Lie symmetries and their inverse problems of fractional non-holonomic 
Hamilton systems. Zhou and Zhang [15] presented Noether theorems for a fractional Birkhof-
fian system within Riemann-Liouville derivatives. Riemann-Liouville derivative and Caputo 
derivative play important roles for the dynamical systems with fractional derivatives [16-18]. 
Agrawal [19], presented the fractional variational problems with left and right Riemann-Liou-
ville derivatives. Zhang [20], further gave the fractional differential equations in terms of com-
bined Riemann-Liouville derivatives. However, the definitions of these fractional order deriv-
atives are mostly in the form of integrals, which bring great difficulties for general researchers 
and many engineering and technical personnel. 

Recently, Abdeljawad [21] and Khalil et al. [22] developed the definitions of the con-
formable fractional derivatives and set the basic concepts in this new simple interesting frac-
tional calculus, which the definitions and properties of the conformable fractional derivative are 
coincident with the usual derivative. In this paper, we study the motion equations and non-No-
ether symmetries of fractional Lagrangian systems with conformable fractional derivatives.

Preliminary 

 We present the definitions and properties of conformable fractional calculus [19, 20] 
to benefit the readers.

 Definition 1 (conformable fractional derivative). The fractional derivative starting 
from a of a function f: [a,∞) of order 0 < α ≤ 1 is defined: 

( )( )
( ) ( )1

0
lima

f t t a f t
T f t

α

α ε

ε

ε

−

→

 + − − = (1)

When a = 0, we write (Tα f)(t). If (T aα   f)(t) exists on (a, b), then:

( )( ) ( )( )lima a
t aT f t T f tα α+→= (2)

Definition 2 (conformable fractional integral). Let α ∈ (0, 1], then the left fractional 
integral starting at a if order α is defined:

( )( ) ( ) ( )
( )1

d d
t t

a

a a

f x
I f t f x x x

x a
α α α−

= =
−∫ ∫ (3)

When a = 0:

( )( ) ( ) ( )
1

0 0

d d
t t f x

I f t f x x x
xα α α−

= =∫ ∫ (4)

Notice that if f is α − differentiable and 0 < α ≤ 1, the conclusions are easily made:

( ) ( )1T f t t f tα
α

− ′= (5)
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( ) 1 0, for all constant functions ( )T t f tα
α λ λ λ− ′= = = (6)

( ) ( ) ( ) , for all ,T af bg aT f bT g a b Rα α α+ = + ∈ (7)

( ) ( ) ( )T fg fT g gT fα α α= + (8)

( ) ( )
2

gT f fT gfT
g g

α α
α

− 
= 

 
(9)

( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 d d
d d

a a a f gT h t T f g t T g t g t t t
g t

α α
α α α

− −= =   (10)

where h(t) = f[g (t)]. 

Fractional Hamilton principles and fractional motion  
equations of holonomicconservative systems

In this section, the exchanging relationship between the isochronous variation and 
fractional derivative is proved. Furthermore, the fractional Hamilton principles for Lagrangian 
systems are presented.

Exchanging relationship between the isochronous 
variation and fractional derivative

 The isochronous variation does not depend on t. Assume that q is determined only 
by the parameter γ. We now study two infinite close orbits q = q(t, γ) and q = q(t, γ + dγ). The 
difference between them is called the isochronous variation of the variable:

( ) ( ), ,q q t d q tδ γ γ γ= + − (11)

Note that q(t, γ + dγ) can be expanded:

( ) ( ) ( ),
, d , d

q t
q t q t

ã
γ

γ γ γ γ
∂

+ = +
∂

(12)

Substituting eq. (12) into eq. (11):
( ),

d
q t

q
γ

δ γ
γ

∂
=

∂
(13)

We know the isochronous variation and fractional derivatives with the fractional gene 
are interchangeable:

1 1d d
d d
q qt t
t t

α α δδ − −   =   
   

(14)

due to
( ),

d
q t

T q Tα α
γ

δ γ
γ

∂ 
=  ∂ 

(15)

( ) ( ) ( ) ( ) ( )
,

, d , , d ,
q t

T q T q t T q t T q t T q tα α α α α
γ

δ γ γ γ γ γ γ
γ

∂ 
= + − = + − ∂ 

(16)
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Fractional Hamilton principles and motion  
equations for holonomic conservative systems

The fractional Hamilton action for holonomic conservative systems is defined:

( ) ( ) ( )
2 2

1 1

1, , d , , d
t t

s s s s
t t

S L t q T q t t L t q T q tα
α α αγ −= =∫ ∫ (17)

where L(t, qs, Tαqs) is Lagrangian function of the fractional systems and γ is a curve.
It is well-known that the Hamilton principle says that the real movement, in all possi-

ble kinds of motions of the fractional systems, keeps the Hamilton action functional invariant 
for the same time, starting and ending positions under the same constraint conditions. Hence 
we know clearly that the fractional Hamilton principle for holonomic conservative systems:

( )
2

1

, , d 0
t

s s
t

S L t q T q tαδ δ= =∫ (18)

with 

0 ( 1, , )
a bs t t s t tq q s nδ δ= == = =  (19)

By using the properties of isochronous variation and fractional derivative:

( ) ( )
2 2 2

1 1 1
1

, , d , , d d
t t t n

s s s s s s
s sst t t

L LS L t q T q t L t q T q t q T q t
q T qα α α

α
δ δ δ δ δ

=

 ∂ ∂
= = = + ∂ ∂ 

∑∫ ∫ ∫ (20)

s s s
s s s

L L LT q T q T q
T q T q T qα α α

α α α

δ δ δ
   ∂ ∂ ∂

= −   ∂ ∂ ∂   
(21)

Substituting eq. (21) into eq. (22):
2 2

1 1

22

1 1

1 1

1 1

d d

d

t tn n

s s
s ss s st t

tt n n

s s
s ss s st t

L L LS T q t T q t
q T q T q

L L LT q t q
q T q T q

α α
α α

α
α α

δ δ δ

δ δ

= =

= =

     ∂ ∂ ∂ = − + =     ∂ ∂ ∂       
     ∂ ∂ ∂ = − +     ∂ ∂ ∂       

∑ ∑∫ ∫

∑ ∑∫ (22)

Since:
2

2 1
1 1 1

0
tn n n

s s s
s s ss s st t t t t

L L Lq q q
T q T q T qα α α

δ δ δ
= = == =

     ∂ ∂ ∂   = − =     ∂ ∂ ∂    
∑ ∑ ∑ (23)

Here δq1,..., δqn are independent, respectively:

0
s s

L LT
T q qα

α

 ∂ ∂
− = ∂ ∂ 

(24)

So the motion equations of fractional holonomic conservative systems are given:

1 d 0, ( 1,2, )
d s s

L Lt s n
t T q q

α

α

−  ∂ ∂
− = = ∂ ∂ 

 (25)
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Fractional motion equations of the non-conservative systems

We know that if the Lagrange function for the fractional holonomic non-conservative 
systems is L = L(t, qs, Tαqs) (s = 1, 2,..., n), then the fractional Hamilton principles for holonomic 
non-conservative systems is defined:

( ) ( )
2 2

1 1

1d d 0
t t

t t

L A t t L A tα
αδ δ δ δ−′ ′+ = + =∫ ∫ (26)

which satisfies δqs|t=tα = δqs|t=tχ = 0 and δ′A= ∑n
s=1Qsδqs where Qs = Qs(t, qs, Tαqs ) are non-con-

servative forces. According to the variation of Lagrangian:

1 1

n n

s s s s
s ss s s s

L L L LL q T q q T q
q T q q T qα α

α α

δ δ δ δ δ
= =

   ∂ ∂ ∂ ∂
= + = +   ∂ ∂ ∂ ∂   

∑ ∑ (27)

Substituting eq. (27) into eq. (26):
2

1

2

1

2 2

1 1

1

1

1 1

d

d

d d

t n

s s s s
s s st

t n

s s s s s
s s s st

t tn n

s s s
s ss s st t

L Lq T q Q q t
q T q

L L Lq T q T q Q q t
q T q T q

L L LT Q q t T q t
q T q T q

α
α

α α
α α

α α
α α

δ δ δ

δ δ δ δ

δ δ

=

=

= =

 ∂ ∂
+ + = ∂ ∂ 

    ∂ ∂ ∂
= + − + =    ∂ ∂ ∂     

    ∂ ∂ ∂
= − + +    ∂ ∂ ∂     

∑∫

∑∫

∑ ∑∫ ∫ (28)

Considering [t1, t2] of arbitrariness, the independence of δqs and the endpoint condi-
tions, we give the fractional motion equations of the non-conservative systems:

0s
s s

L LT Q
q T qα

α

∂ ∂
− + =

∂ ∂
(29)

i. e.
1 d , ( 1, 2, )

d s
s s

L Lt Q s n
t T q q

α

α

−  ∂ ∂
− = = ∂ ∂ 

 (30)

The non-Noether symmetry of the fractional Lagrangian systems 

Now we introduce a fractional Euler operator:

1d d
d ds

s s s s
E t

t T q q t T q q
α α

α α α

−∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂
(31)

the motion eq. (30) of the fractional Lagrangian system turns into:
( )s sE L Qα = (32)

Assuming the fractional Lagrangian system is non-singular, which satisfies:
2

det 0
s k

L
T q T qα α

 ∂
≠  ∂ ∂ 

(33)

we can work out all the generalized acceleration based on the motion eq. (29):

( ) ( ), ,s s s sT T q t q T qα α αα= (34)
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Introducing the infinitesimal transformations on time and generalized co-ordinates:

( ) ( ) ( ), s s st t q t q t q t∗ ∗ ∗= = + ∆ (35)

and their expansion formulae:

( ) ( ) ( ), , ,s s s s st t q t q t t q T qαεξ∗ ∗ ∗= = + (36)

where ε is the infinitesimal parameter and ξs – the generating function of the infinitesimal trans-
formations.

Suppose that an infinitesimal transformation vector of generator:
( )0

s
s

X
q

ξ ∂
=

∂
(37)

and its extensions are:

( ) ( ) ( )
( )

1 2 1d d d,
d d ds s s

s s s
X X X

q t T q t t T T qα α α α α α
ξ ξ ξ∂ ∂ ∂

= + = +
∂ ∂ ∂

(38)

Under the infinitesimal transformations (36), eq. (34) lead to the determining equa-
tions of non-Noether symmetry:

d d d
d d d

s s
s k k

k st t q T q tα α α α

α α
ξ ξ ξ

∂ ∂
= +

∂ ∂
(39)

where

	

1d d
d ds s s s

s s s s

T q t q
t t q T q t t q T q

α
α

α α α α α

α α−∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂ ∂ ∂

In terms of the theory of invariance of the differential equations under the infinitesi-
mal transformations, if eq. (34) is invariant under the infinitesimal transformations:

( ) ( ) ( ) ( ) ( ) ( )2 1, , 0s s s s s sX T T q t q T q T T Xα α α α αα ξ α − = − =  (40)

thus, eq. (39) is proved. By using fractional Euler operator, eq. (40) is written:
( ) ( ){ } ( ) ( )2 1

s sX E L Xα α= (41)

Proposition. Let ξs be the generators of  infinitesimal transformations which satisfy  
eq. (39). If there exists a function µ = µ(t, qs, Tαqs) such that:

( )d ln 0
d

s

sT q tα α

α
µ

∂
+ =

∂
(42)

then system (34) possesses a fractional Hojman’s conserved quantity

( )1 1 d const.
dH s s

s s
I

q T q t
α

α α
µξ µ ξ

µ µ
 ∂ ∂

= + =  ∂ ∂  
(43)

Proof. Consider:

( )1 1d d d 1 d 1 d
d d d d dH H s s

s s
I t I t

t t t q t T q t
α α α α

α α α α α
µξ µ ξ

µ µ
− −

    ∂ ∂ = = +       ∂ ∂       
(44)
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It is straightforward to show:
d d

d d
k

s s s kt q q t q T qα α α

α µµ µ
∂∂ ∂ ∂

− = −
∂ ∂ ∂ ∂

(45)

d d
d d

k

s s s s kt T q T q t q T q T qα α α α α α

αµ µµ µ
∂∂ ∂ ∂ ∂

− = − −
∂ ∂ ∂ ∂ ∂ (46)

From eqs. (39), (42), (45), and (46), we know that then we have (d ̄/dαt)I αH = 0, 
(d ¯/dt)I αH = t1– α(d ¯/dαt)I αH = 0. Now we have proved that (d ¯/dαt)I αH = 0 and (d ¯/dt)I αH = 0 are equiva-
lent based on the property (6) of conformable fractional derivative.

Remark. It is worth pointing out that eqs. (38)-(43) are all new results, which are the 
fractional differential equations with conformable fractional derivative. 

Example 

Let us consider the following fractional non-conservative system, the Lagrangian 
functions and non-conservative forces:

	
( ) ( ) ( ) ( )1 12 2 2 2

1 2 1 1 2 1
1 , 1 , 1
2

L T q T q Q t t T q Q t T qα α α α
− − = + = − + = + 

According to the fractional motion equations of non-conservative system:

	
( ) ( ) ( ) ( )1 12 2

1 1 2 11 , 1T T q t t T q T T q t T qα α α α α α
− −

= − + = +

From the determining of Lie symmetry:

	
1 1 2 12 2

d d d d d 1 d,
d d d d d d1 1

t
t t t t t tt tα α α α α α

ξ ξ ξ ξ= − =
+ +

Solving previous system yields:

	 ( ) ( ) ( )
1/2 22

1 2 1 2 1 1 2 2 1 2 1 2 21, 0, 1 , 0,T q t T q tT q q T q tT q qα α α α αξ ξ ξ ξ ξ ξ= = = = + + − = = + −

hence

	
( )2

d ln
d1

t
tt α

µ− =
+

It is easy to see that:

	 ( ) ( ) ( )
1/2 1/22 2

1 2 21 , 1t t T q tT q qα αµ µ= + = + + −

are solutions of aforementioned equation. Consequently, the fractional Hojman’s conserved 
quantities:

	 ( ) 1
1 2 20, const.H HI I T q tT q qα α

α α
−= = − + − =

	 ( )1/22 1/2 2
1 1(1 ) const, 2 1 const.H HI T q t I T q tα α

α α= − + = = − + =

( ) ( )1 2 2 1 2 22 const, 3 const.H HI T q tT q q I T q tT q qα α
α α α α= − + − = = − + − =
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