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In this paper, the circulatory integral and Routh’s equations of Lagrange systems 
are established with Riemann-Liouville fractional derivatives, and the circulatory 
integral of Lagrange systems is obtained by making use of the relationship between 
Riemann-Liouville fractional integrals and fractional derivatives. Thereafter, the 
Routh’s equations of Lagrange systems are given based on the fractional circulato-
ry integral. Two examples are presented to illustrate the application of the results. 
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Introduction

Fractional calculus has received considerable attention in recent years. This is largely 
because it has been demonstrated that in many physical phenomena of nature, for example, 
in science and engineering, fractional derivatives can be used to develop accurate models of 
these phenomena. This can be particularly seen in the field of modern engineering, where the 
fractional calculus has become a powerful tool to modeling the anomalous dissipation phenom-
enon. It is a matter of fact that with the development of science and technology, the applications 
of fractional calculus in various fields are becoming increasingly important [1-5]. 

The fractional calculus first appeared in the letter that the 17th century French math-
ematician L’Hopital wrote to Leibniz in 1695, and with this, the fractional calculus was born. 
The first book on fractional calculus was published in 1974. In recent decades, some progress 
has been made in the study of fractional calculus and as a result its applications have flour-
ished in various fields of applied sciences and engineering. Particularly, the study of conserved 
quantities of Euler-Lagrange equations with Riemann-Liouville fractional derivatives is a pop-
ular subject of current research. Since the definitions of the left and right Riemann-Liouville 
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fractional integrals and fractional derivatives were proposed, the mathematicians, physicists 
and dynamics experts were engaged in a serious study about it [6]. In 1996, Riewe [7] applied 
the fractional calculus to the non-conservative mechanical system and did a preliminary study 
on the fractional variational problems. Later, Agrawal [8] presented Euler-Lagrange equations 
with left and right fractional derivatives in the Riemann-Liouville sense for fractional variation-
al problems. Improving on the existing results, Zhou et al. [9] established the Lagrange equa-
tions of general holonomic systems with fractional derivatives. However, as far as we know, the 
basal problem of the fractional circulatory integral of Lagrange systems has not been studied 
yet. It is in this spirit that we study this problem in this paper, we present the circulatory integral 
of Euler-Lagrange equations with fractional derivatives using the method of direct integration. 
Thereafter, Routh’s equations of Lagrange systems with fractional derivatives are established.

Fractional derivatives and fractional integrals

In this section, we review the basic concepts of left and right Riemann-Liouville frac-
tional integrals and fractional derivatives.

Let f be a function with some smoothness in the interval [a, b]. For ∀t ∈ [a, b], the 
left Riemann-Liouville fractional derivatives aDt

α and the right Riemann-Liouville fractional 
derivatives tDb

α of order α, are defined [10-14]:
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The Riemann-Liouville fractional integral aIt
α and tIb

α of order α, are defined:
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where n ∈ N, n – 1 ≤ α < n, and Γ is the Euler gamma function.
 According to the definitions of fractional derivatives and integrals, we know that the 

following equalities hold for λ, µ ∈ R, 0 < α < 1 and  f(t) ∈ C1(R):
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[ ( ) g( )] ( ) ( )a t a t a tD f t t D f t D g tα α βλ µ λ µ+ = + (9)
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Circulatory integral

Considering a mechanical system of n degrees of freedom, the Lagrangian of this 
system is given [8, 9]:

0, ( 1,2, , )t b a t
s a t s t sb

L L LD D s n
q D q D q

α β
α β

∂ ∂ ∂
+ + = =

∂ ∂ ∂
 (13)

where q1, ..., qn are generalized co-ordinates, 0 < α, β < 1 and L = L(t, qs, aDt
α qs, tDt

 β qs).
Equation (13) is the fractional Euler-Lagrange equation of holonomic conservative sys-

tems with Riemann-Liouville fractional derivatives. The resulting equation is more common than 
Euler-Lagrange equation containing integral order derivatives. When α = 1, fractional Euler-La-
grange equation degenerates into integer order Euler-Lagrange equation. Given the fact that many 
fractional systems can be modeled more accurately using fractional derivative models.

If a generalized co-ordinate, such as q1, is independent in the fractional Lagrange 
function L, we call q1 the cyclic co-ordinate. From eq. (13):
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By using eqs. (7), (8), and (14):
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From eqs. (3) and (4):
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Integrating both sides of eq. (16):
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where C1 is a constant of integration. The integral (17) is known as the fractional circulatory 
integral of the eq. (13) . Let us now discuss two special cases.

Case 1. Taking into account:
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one knows
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From eqs. (5), (10), (18), and (19), we can get the fractional circulatory integrals:
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Case 2. For the case when:
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we see that
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Similarly, we have the fractional circulatory integrals:
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Routh’s method 

Considering the holonomic conservative systems of n free degrees, the fractional La-
grange equations of the system are written by eq. (13), assuming q1, q2,... qk are k cyclic co-or-
dinates and using eqs. (20), (21), (24) and (25):
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Since q1,..., qk are independent in the Lagrange function L, then L is in the form:
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Now we get the results:
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which we name as the Routh function. The R can be re-written in the following form: Moreover, 
the function R will be represented in the form:
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Considering the variation of eq. (33):
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Taking into account of the variations of eqs. (26), (28), and (34), we get:
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Substituting eqs. (35) and eq. (37) into eq. (38) gives:
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The coefficients of δqk+1,..., δqn, δ aDt
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are equal to zero because they are independent of each other. Therefore, we have:
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We know from eqs. (40) and (13):
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which we name as fractional Routh’s equations. From eq. (42), we find that eqs. (13) and (42)  
are in the same form, while the order of eq. (42) reduces to n – k. Furthermore eq. (41) can be 
written:
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Integrating both sides of eq. (43), we have:
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To summarize our results, the fractional circulatory integral is the first integral of 
Euler-Lagrange equation of holonomic conservative systems. Using the fractional circulatory 
integral, we can reduce the order of Euler-Lagrange equation, which becomes Routh’s equation 
as eq. (42).

Two illustrative examples

We consider the motion of two particles of linear damped oscillator with the left Rie-
mann-Liouville fractional derivative firstly. The Lagrangian of the system:
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let us study motion of the system. Note that q1, q2 are independent of the Lagrange function, L. 
We know from eq. (17) that the fractional circulatory integral:

	

1
t b s

a t s

LI C
D q

α
α

− ∂
− =

∂



Fu, J.-L., et al.: Circulatory Integral and Routh’s Equations of Lagrange ... 
THERMAL SCIENCE: Year 2021, Vol. 25, No. 2B, pp. 1355-1363	 1361

which implies that:
1( ) , 1, 2
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In view of eq. (45):
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Substituting eq. (47) into (46) gives:
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Thus from eqs. (6), (12), and (48), we obtain the motion of this system. When α = 1, 
eq. (45) becomes:

2 2
1 2

1 ( ) ( ) exp( ), ( const)
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Considering the definition of the usual circulatory integral:

, ( 1, 2)s
s

L s
q

β∂
= =

′∂
(50)

We see from eq. (49):

exp( ) s
L t q
q s

γ∂ ′=
′∂

(51)

Consequently:

exp( )
s

sq
t

β
γ

′ = (52)

It is easy to see that eqs. (48) and (52) are in the same form. So when α = 1, the frac-
tional circulatory integral is similar to the usual circulatory integral. 

Now we consider a mechanical system of two degrees of freedom as the second ex-
ample. The Lagrangian of this system is given:
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(53)

We now study motion of the system. Since q1 is independent in the Lagrange function 
L, from eqs. (10) and (17), we obtain the fractional circulatory integration:
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Using eq. (11), we have:
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Considering the differentiation of eq. (53), we have:
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and hence:

( ) 12
1 ( )a t

CD q b t αα

α
−−

= −
Γ

(57)

 According to eqs. (33), (53), and (57), we obtain the fractional Routh function of 
system:

( ) ( ) ( )2 2 2
1 1 1 2 2
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1 1
2 2a t a t a t a t
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LR L D q L D q D q D q q
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α α α α
α

∂
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From eq. (42), the fractional Routh’s equation of system can be written:

2 2
0t b

a t

R RD
q D q

α
α

∂ ∂
+ =

∂ ∂
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Substituting the differentiation of eq. (59) into (58), we get:

( )2 1t b a tD D qα α = (60)

From eqs. (8) and (60):

( )1
2 2t b a tI D q t Cα α− = − + (61)

Substituting eqs. (9) and (11) into (61):

( ) 12
2

2 ( )
(1 ) ( )a t

C bD q b t b tαα α

α α
−−

= − + −
Γ + Γ

(62)

Thus from eqs. (6), (12), (57), and (62), we obtain the motion of this system. When  
α =1, eq. (53) becomes:

( ) ( )2 2
1 2 2

1
2

L q q q ′ ′= + −  (63)

Considering the usual circulatory integral and Routh’s equation of the system:

1 1 2 2,q q tβ β′ ′= = − + (64)
We observe from eqs. (57), (62), and (64), that the fractional circulatory integral can 

be used to obtain the usual circulatory integral. Thus, through the aforementioned two exam-
ples, one can conclude that the usual circulatory integral and Routh’s equation are special cases 
of the fractional circulatory integral and Routh’s equation.
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