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In this work we study numerically the 3-D turbulent natural convection in a par-
tially heated cubic cavity filled with water containing metallic nanoparticles, me-
tallic oxides, and others based on carbon. The objective is to study and compare 
the effect of the addition of nanoparticles studied in water and also the effect of 
the position of the heated partition on the heat exchange by turbulent natural 
convection in this type of geometry, which can significantly improve the design of 
heat exchange systems for better space optimization. For this we have treated 
numerically for different volume fractions the turbulent natural convection in the 
two cases where the cavity is heated respectively by a vertical and horizontal 
strip in the middle of one of the vertical walls. To take into account the effects of 
turbulence, we used the standard k-ε turbulence model. The governing equations 
are discretized by the finite volume method using the power law scheme which of-
fers a good stability characteristic in this type of flow. The results are presented 
in the form of isothermal lines and current lines. The variation of the mean 
Nusselt number is calculated for the two positions of the heated partition as a 
function of the volume fraction of the nanoparticles studied in water for different 
Rayleigh numbers. The results show that carbon-based nanoparticles intensify 
heat exchange by convection better and that the position of the heated partition 
significantly influences heat exchange by natural convection. In fact, an im-
provement in the average Nusselt number of more than 20% is observed for the 
case where the heated partition is horizontal. 
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Introduction 

Today, with the permanent growth in energy prices, its control has become a major 

challenge in all areas of activity. For energy professionals, the first challenge is to design en-

ergy systems and processes with better efficiencies. The increased demand for the perfor-

mance of these thermal systems has always aroused considerable interest in techniques for 

improving heat transfer. The technological importance of heat transfer by natural convection 

is confirmed by its use in different fields such as metallurgy, the food industry, solar technol-

ogy, cooling of nuclear reactors, cooling of electronic circuits and transformers, etc., it then 

becomes necessary to properly quantify the heat exchanges between a heated wall and a flow-
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ing fluid for better design and optimal use of heat exchange systems. The thermophysical 

properties of the heat transfer fluids used often limit the efficiency of such processes. But with 

advances in nanotechnology, the idea of suspending nanoscale particles in a base liquid has 

improved its thermal properties for better intensification of heat transfer. 

The study of the natural convection of nanofluids in cavities has been the subject of 

a very large number of works, both theoretical and experimental. Choi and Eastman [1] by 

dispersing TiO2 nanoparticles with a diameter of 27 nm in water, obtained an improvement in 

thermal conductivity of 10.7% for a volume fraction of 4.35%. This value is much lower than 

the 32% obtained for the nanofluid (water + Al2O3) with the same concentration of nanoparti-

cles. Namburu et al. [2] presented a monophasic model to study numerically the heat transfer 

characteristics of a nanofluid in a circular tube where the flow is in turbulent regime. They 

found that the Nusselt number is greater for the small diameters of nanoparticles. Other re-

searchers have thought of other models. Indeed, [3] and Mirmasoumi and Bezadmehe [4] used 

the two-phase model of a nanofluid in a tube in forced natural convection. 

Much more work has been done over the past decade to characterize nanofluids. 

Irfan et al. [5] analyzed the improvement of heat transfer by natural convection of nanofluids 

through a vertical corrugated plate subjected to a variable heat flux. They found that the rate 

of heat transfer in Al2O3- and Cu-based nanofluids compared to pure water can be increased 

due to the increased concentration of nanoparticles. Fallah et al. [6] have studied numerically 

the effect of the volume fraction of Al2O3 nanoparticles in water on the hydrodynamic and 

thermal characteristics in natural convection in a concentric horizontal annular enclosure for 

Rayleigh numbers ranging from 103 to 105. Javed et al. [7] presented a detailed literature re-

lated to studies on heat transfer by natural convection of nanofluids in different flow regimes 

for different heat transfer devices such as tubes, heat sinks, heat exchangers, etc. The authors 

highlighted the effect of the flow regime, the type of nanofluid used, the size of the nanoparti-

cles, the temperature and the concentration of nanoparticles on the thermal characteristics of 

the nanofluid. 

Other studies have highlighted the effects of the geometrical appearance of confined 

enclosures, as well as their heating mode on convective heat transfer. Mendu et al. [8] studied 

the natural convection of nanofluids in a square enclosure embedded with a discrete heating 

element at the bottom to highlight the effect of the position of the heater on the heat exchange. 

Aghajani et al. [9] also studied the effect of the location of the heating resistance on heat 

transfer and the generation of entropy in a cavity. Their results show that the location of the 

heater has a significant effect on the flow pattern and temperature fields within the enclosure 

and, subsequently, on the generation of entropy. Indeed, a greater heat transfer was observed 

when the heater is located on a vertical wall. Terekhova et al. [10] studied the influence of the 

geometry of the enclosure on the 3-D flow structure and heat transfer. They have shown that 

the 3-D nature of the flow has a profound effect on heat transmission for smaller form ratios 

(F.R <1). For longer enclosures, the heat emission coefficient is not entirely related to the 

height/width ratio of the enclosure and can be determined by a 2-D approach. 

The turbulent nature can also considerably influence convective flows by improving 

mixtures and heat and mass transfers [11-13]. Knowledge of these phenomena can therefore 

contribute to the development of strategies for controlling or optimizing heat and mass trans-

fers or transport. 

Most studies of natural convection have dealt with 2-D configurations. To get closer 

to reality and constitute a research fund for heat exchange systems, we study numerically the 

flow of nanofluids in a 3-D cavity (cube) in order to highlight the effects of the volume frac-
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tion, Ф, of the nanoparticles studied in water and the effect of the position of the heating strip 

in the vertical wall on the turbulent natural convection. 

Modeling and equations 

The configuration studied is shown in fig. 1 is a cubic cavity, filled with water con-

taining different concentrations of nanoparticles. The cavity is formed by a vertical wall con-

taining in its center a vertical/horizontal band representing 25% of its surface and maintained 

at a hot temperature, Th, a straight vertical wall maintained at a constant cold temperature, Tc 

and two other horizontal walls considered adiabatic. 

All the thermophysical properties of nanofluids are considered constant, except for the 

variation of the density which is estimated by the Boussinesq approximation. Table 1 groups to-

gether in the thermophysical properties of the pure fluid and of the nanoparticles studied.  

Table 1. Thermophysical properties of water and nanoparticles 

 Pr ρ [kgm–3] Cp [Jkg–1K–

1] 
k [Wm–1K–1] β [10–5 K–

5]<<<<<<<<<<<(10-5K-1(10-5K-1 
Reference 

Pure water 4.7 997 4179 0.613 21 [13] 

Al2O3 – 3970 765 40 0.85 [13] 

CuO – 6500 540 18 1.0 [14] 

Cu2O – 6080 474 42 0.19 [15] 

Fe3O4 – 5200 670 6 1.3 [16] 

MgO  3580 879 45 3.36 [17] 

SiO2 – 3970 765 36 0.63 [18] 

TiO2 – 4250 686.2 8.95 0.9 [19] 

ZnO – 5600 495 80 3 [20] 

ZrO2 – 5600 418 2.6 0 .85 [21] 

Au – 19300 129 318 1.42 [22] 

Ag – 10500 235 429 1.89 [22] 

Cu – 8933 385 400 1.67 [22] 

Co – 8900 420 100 1.2 [23] 

MoS2 – 5060 397.21 904.4 2.34 [24] 

Nimonic 
80A 

– 8190 448 112 1.27 [25] 

SiC – 3160 675 490 0.3 [26] 

Steel – 8030 502.48 16.27 1.2 [27] 

C60 – 3500 509 2300 1.72 [26] 

Diamond – 3510 497.26 1000 0.1 [28] 

GO – 1800 717 5000 28.4 [19] 

MWCNT – 1600 796 3000 0 .1 [29] 

SWCNT – 2600 425 6600 0 .1 [29] 
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Figure 1. Geometry and limit conditions of the configuration studied 

To account for the effects of turbulence, the k-ε model is used. Therefore, the gov-

erning equations written in the Cartesian co-ordinate system (x, y, z) are: 

– equation of continuity  
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– momentum equation in the y-direction 
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– momentum equation in the z-direction 
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– thermal energy equation 
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– turbulent kinetic energy equation 

 nf
nf nf nf nf

( )t

k

k k k k
u v w

x y z x x


   



       
             

 

 nf nf
nf nf nf nf nf

( ) ( )
( ) ( )t t

k k
k k

k k
P G

y y z z

 
   

 

            
                        

 (6) 

– equation for the rate of energy dissipation 
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The (Pk)nf represents the stress production and is calculated: 
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The (Gk)nf is the buoyancy term, and is defined: 
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The Prandtl number is calculated: 

 
nf nf eff,f

nf
f f eff,nf

Pr Pr
Cp K

Cp K




  (10) 

The following formulas were used to compute the thermal and physical properties of 

the nanofluids under consideration. 

The eddy viscosity is calculated:  

 
2

nf nf( )t

k
C f  


  (11) 
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The dynamic viscosity of the nanofluid defined by the Brinkman model [30]: 

 nf 2.5
p(1 )

f






 (12) 

The Keff,nf, the effective thermal conductivity of the nanofluid defined by the Max-

well-Garnetts model [31]: 

 
eff,p eff,f eff,f eff,p

eff,nf eff,f
eff,p eff,f eff,f eff,p

( 2 ) 2 ( )

( 2 ) ( )

K K K K
K K

K K K K





   
  

    

 (13) 

The equations (13)-(15) are general relationships used to compute the density, the 

coefficient of thermal expansion and the heat capacity for a classical two-phase mixture [32]. 

 nf f p(1 )       (14) 

 nf f p(1 )       (15) 

 nf f p(1 )Cp Cp Cp     (16) 

The empirical constants were recommended by Launder and Spalding [33] is listed 

in tab. 2. 

Table 2. The values of the constants in the k-ε model 

 

By analogy with the expression of Cε3 suggested by Henkes [34], we use the follow-

ing expression: 

 3 tanh
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All physical properties were estimated at the average temperature: 

 h c
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T T
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  (18) 

The average Nusselt number Nuav of the hot wall is expressed: 
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The Rayleigh number is defined: 

 

2 3
nf nf

nf2
nf

g
Ra Pr

TH 




  (20) 

C m Cε1 Cε2 k  

0.09 1.44 1.92 1.0 1.33 
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Numerical resolution and code validation 

To numerically solve the PDE (1)-(7), we proceed to their discretizations in order to 

obtain a system of algebraic equations whose resolution allows us to determine the fields of 

all the variables of the problem considered. The finite volume method has been adopted to ac-

complish this discretization, and the developed SIMPLE algorithm for pressure correction. 

The domain of computation is subdivided into finite number of elementary subdo-

mains, called control volume. Each of these includes a node called the main node, as shown in 

fig. 2. 

For a main node P, the points E and W (East and West) are neighbors in the direc-

tion x-x, the points N and S (North and South) are those in the direction y-y, while the points T 

and B (Bottom and Top) in the z-z direction. The control volume surrounding P is delimited 

by strong solid lines. The faces of the control volume are located at points e and w in the di-

rection x-x, n and s in the direction y-y and t and b in the direction z-z. 

Turbulent flows are significantly influenced near the walls. In fact, in the areas very 

close to the walls, the viscosity effects reduce the fluctuations in tangential speeds. Thus, to 

model the flows near the walls, we used a refined uniform mesh in the vicinity, fig. 3. 

  

Figure 2. The 3-D control volume Figure 3. Refined uniform mesh near the walls 

To study the influence of the mesh, we calculated the average Nuav for different grids 

and for Rayleigh numbers 107, 108, and 109 to account for the turbulent regime. The results ob-

tained for a cubic cavity filled with differentially heated water are presented in tab. 3. 

Table 3. Validation of the grid for a cubic cavity 

From tab. 3, it appears that the grid 80 × 80 × 80 is sufficiently fine to carry out the 

numerical simulations for the Rayleigh numbers 107, 108, and 109. 

Ra = 107 
Grid 40 × 40 × 40 60 × 60 × 60 80 × 80 × 80 100 × 100 × 100 

Nuav 16.92200 17.13907 17.31362 17.35151 

Ra = 108 
Grid 40 × 40 × 40 60 × 60 × 60 80 × 80 × 80 100 × 100 × 100 

Nuav 30.57809 31.24273 31.64807 31.75411 

 
Ra = 109 

Grid 40 × 40 × 40 60 × 60 × 60 80 × 80 × 80 100 × 100 × 100 

Nuav 53.88716 55.99688 57.00166 57.30331 
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To discretize the governing equations, we are based on the finite volume method using 

the power law scheme which offers a good stability characteristic in the case of turbulent flows. 

The digital resolution of the problem was carried out by an elaborate FORTRAN code. The dy-

namic and thermal fields are calculated iteratively until the following convergence criterion is 

satisfied: the maximum residual value of mass, momentum, and thermal energy less than 10–6. 

To validate the numerical method, we compared the values of the Nuav calculated on 

the cold wall of a cubic cavity filled with air with those found by Bilgen et al. [35], Dixit et 
al. [36], Bairi et al. [37], and Lankhorst [38]. The values of the mean Nusselt number calcu-

lated for the values of the Rayleigh number (Ra = 107 and Ra = 108) are presented in tab. 4. 

Table 4. Comparison of average Nusselt number values with literature 

 

Table 4 shows a good agreement between the results of our code and those proposed 

by Bilgen et al. [35], Dixit et al. [36], Bairi et al. [37], and Lankhorst [38]. 

In fig. 4 we successively present the variations of the vertical speed 4(a) and the var-

iations of the temperature 4(b) at mid-height in the median plane of the cavity. 

 

Figure 4. Variation of the vertical velocity (a) and the temperature (b) as a function of X at mid-height 
of the cavity 

The values of speed are almost confused with those of experience. Furthermore, the 

temperature values show a good agreement with those of the experiment. The latter are slight-

ly higher than those calculated numerically in the middle of the cavity. 

Results and discussion 

Figures 5 and 6 successively represent the temperature fields and the lines of cur-

rents inside a cubic cavity containing pure water in the two cases where the cavity is heated 

respectively by a vertical strip and another horizontal at the middle of one of the vertical 

walls. 

Ra Present [35] [36] [37] [38] 

107 16.33 16.62 16.79 16.07 15.92 

108 29.99 31.52 30.50 31.33 28.97 
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Figure 5. Isotherms contours of the pure water in a rectangular cavity for Ra = 109; (a) vertical 
configuration and (b) horizontal configuration 

 

Figure 6. Streamlines of the pure water in a rectangular cavity for Ra = 109; (a) vertical configuration 

and (b) horizontal configuration 

The isothermal lines and the current lines (for Ra = 109) represented successively by 

figs. 5 and 6 are marked by a stagnant horizontal stratification inside the cavity, which means 

that the heat transfer takes place for the most part by convection. It is also seen that the gradi-

ents of temperature and velocity become increasingly steep near the vertical walls, which 

shows that most of the turbulent flow occurs along the vertical sides of the cavity. 

The Nuav along the cold wall is shown in figs. 7-9 for different Rayleigh numbers 

(107, 108, and 109), for different types and volume fractions of nanoparticles (0-0, 02-0.04, 

and 0.06) in water and for both configurations (horizontal/vertical heating strip). 
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Figure 7. Variation of the mean Nusselt number as a function of the volume fractions of the metallic 
nanoparticles for Ra = 107 (a), Ra = 108 (b), and Ra = 109 (c) 

 

Figure 8. Variation of the mean Nusselt number as a function of the volume fractions of the metal oxide 

nanoparticles for Ra = 107 (a), Ra = 108 (b), and Ra = 109 (c) 

 

Figure 9. Variation in the mean Nusselt number as a function of the volume fractions of carbon-based 
nanoparticles for Ra = 107 (a), Ra = 108 (b), and Ra = 109 (c) 

From the results, we can clearly see that the position of the heated partition consid-

erably influences the heat exchange by natural convection. Indeed, figs. 7-9 show that the case 

where the heated partition is horizontal prevails and that the effect of this position is inde-

pendent of the volume fraction of nanoparticles in water. 

Figures 7-9 also show that the addition of the nanoparticles considerably improves 

the heat exchange by convection and that this improvement is all the greater as the number of 

Rayleigh is large. These figures represent an overview to compare the effect of the type of 

metal nanoparticles, metal oxide or carbon-based on turbulent natural convection. 

We can also see that the carbon-based nanoparticles better intensify the heat ex-

change by convection and that their effect is even greater than the number of Rayleigh is 

large, in particular, for the grapheme oxide nanoparticles. This shows that grapheme oxide 

nanoparticles considerably improve the thermophysical properties of the fluid in turbulent 
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flow. Thus, their use in suspension in heat transfer fluids can considerably improve the design 

of heat exchange systems in view of better optimization of space requirements.  
On the other hand, figs. 7 and 8 also show that nanoparticles of gold and zirconium 

dioxide slow down heat transfer by convective flow. This shows that the addition of these na-

noparticles in water deteriorates its thermo-physical properties in turbulent flow.  

Conclusions  

This work has studied numerically the effects of different nanoparticles (metallic, 

metallic oxide, and carbon-based) and the effect of the position of the heated partition on the 

heat transfer rate for turbulent natural convection at interior of a cubic cavity. Numerical sim-

ulations which are carried out for different Rayleigh numbers (107, 108, and 109) for different 

volume fractions of the nanoparticles and for the two positions of the heated partition (hori-

zontal/vertical) have shown as follows. 

 The horizontal position of the heated partition considerably improves the heat transfer by 

natural convection much better than the vertical position (there is an increase in the 

Nusselt number of more than 20%) and that the effect of this position is independent of 

the volume fraction of nanoparticles in water. 

 The use of carbon-based nanoparticles suspended in water makes it possible to bring 

about a much greater improvement in thermal performance compared to the use of metal-

lic nanoparticles or metallic oxide. This is due to their high thermal conductivities and 

their low densities. 

 The effect of the type and volume fraction of nanoparticles on the value of the Nusselt 

number isis even greater than the number of Rayleigh is large. 

 Unlike other nanoparticles, gold and zirconium dioxide nanoparticles deteriorate the 

thermo-physical properties of turbulent water, which slows thermal transfer by convective 

flow. 

The results obtained clearly show that the use of nano-fluids based on carbon and in 

particular based on grapheme oxide and that the horizontal position of the heated partition can 

considerably influence the heat transfer by turbulent natural convection in this type of geome-

try. 
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Nomenclature 

Cp – specific heat at constant pressure, [Jkg–1K–1] 
g – gravity acceleration, [ms–2] 
Gk – buoyancy term 
H – cavity height, [m] 
k – turbulent kinetic energy, [m2s–2] 

Keff – effective thermal conductivity 
Nu – Nusselt number 
p – pressure, [Pa] 
Pk – stress production 
Pr – Prandtl number 
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Ra – Rayleigh number 
T – temperature, [K] 
u, v, w – velocity components, [ms–1] 
x, y, z – cartesian co-ordinates, [m] 

Greek symbols 

a – thermal diffusivity, [m2s–1] 
β – volumetric coefficient of thermal  

expansion, [K–1] 
ε – dissipation rate of turbulent kinetic energy 
µ – dynamic viscosity, [Pa·s] 
ρ – density, [kgm–3] 

σk, σt, σε – numbers of turbulent Prandtl of  
k, t, and ε 

Φ – particle volume fraction 

Subscripts 

av  – average 
c – cold 
f  – fluid 
h – hot 
nf – nanofluid 
p  – nanoparticle 
ref – reference 
t – turbulent 
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