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The purpose of the present study is to compare the well-posedness criteria of the 
free-pressure two-fluid model, single-pressure two-fluid model, and two-pressure 
two-fluid model in a vertical pipe. Two-fluid models were solved using the con-
servative shock capturing method. A water faucet case is used to compare two-
fluid models. The free pressure two-fluid model can accurately predict disconti-
nuities in the solution field if the problem's initial condition satisfies the Kelvin 
Helmholtz instability conditions. The single-pressure two-fluid model can accu-
rately predict the behavior of flows in which the two phases are poorly coupled. 
The two-pressure two-fluid model is an unconditionally well-posed one. If in the 
free-pressure two-fluid model and single-pressure two-fluid model, the range of 
velocity difference of two phases exceeds certain limits, the models will be ill-
posed. The two-pressure two-fluid model produces more numerical diffusion than 
the free-pressure two-fluid and single-pressure two-fluid models in the solution 
field. High numerical diffusion of two-pressure two-fluid models leads to failure 
to better comply with the problem's analytical solution. Results show that a sin-
gle-pressure model is a powerful model for numerical modeling of gas-liquid 
two-fluid-flows in the vertical pipe due to a broader range of well-posed than 
free-pressure models and less numerical diffusion than the two-pressure mode. 
Key words: two-fluid model, two-phase flow, well-posedness,  

numerical modeling 

Introduction 

The investigation of two-phase fluid-flow is an essential aspect of applied researches 

and industrial applications. In nuclear power plants, the two-phase water-flow is a crucial 

component of the system because the water in its liquid-gas two-phase form is used as a cool-

ant and a moderator in reactor cores. Also, this flow type appears in other equipment of nu-

clear reactors, including turbine, condenser, and heat exchanger. Hence, obtaining the most 

favorable design for such applications requires a concrete understanding of two-phase fluid- 

-flow physics's underlying characteristics and mathematical modeling. 

In numerical modeling of two-phase flows, selecting an appropriate mathematical 

model is one of the significant challenges. Identifying and evaluating the selected model's re-

strictions is essential for a more accurate prediction of two-phase flows. 

–––––––––––––– 
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Using 3-D Navier-Stokes equations is very costly for analyzing two-phase flows. 

As a result, various models are being used to simplify these equations. Despite the heavy 

literature on mathematical models for such flows, the most widely used models fall into 

three following categories [1]: homogeneous equilibrium model, drift-flux model, and two-

fluid model.  

Among these models, the most comprehensive model is the two-fluid model [2]. The 

model that we will focus on in this work is the two-fluid model. 

Although the two-fluid model has successfully been used in simulating two-phase 

flow in a pipeline, the two-fluid model suffers from an ill-posedness issue. When the relative 

velocity between gas and liquid phases surpasses a critical value, the governing equations lose 

their realistic characteristics [3]. Complex roots suggest an elliptic equation system that re-

sults in the two-fluid model's ill-posedness because only the initial conditions can be specified 

in the temporal direction. Any infinitesimal disruption will cause exponential growth of the 

waves without any limit [3]. This ill-posedness situation suggests that the two-fluid model 

cannot correctly predict the pipe's realistic flow features. Therefore, for this model's meaning-

ful results, the magnitude of relative velocity between gas and liquid phases must be smaller 

than a critical value, which depends on the liquid level, gravity, and other flow properties [3]. 

So far, many solutions have been suggested to eliminate or reduce the two-fluid 

model's ill-posedness problem. One of these solutions is to present different assumptions for 

the pressure of phases and pressure correction term. There are various types of two-fluid 

models, and being ill-posed or well-posed of their governing equations is the criteria for their 

categorizing. Types of the two-fluid models are presented: free-pressure model [4], single-

pressure model [5], and two-pressure model [6]. 

Since most two-fluid models are non-conservative, it is recommended to use a par-

ticular two-fluid model. Watson [4] proposed a model that significantly reduced the numerical 

complexity. This model assumed the gas and liquid phases are incompressible and the fluids 

treated as a two-phase mixture that flows through a gravitationally separated configuration. In 

this area, some researchers used the free pressure two-fluid model [7-11]. 

Woodburn and Issa [12] has proposed a new methodology and Issa and Kempf [13] 

called the slug capturing technique in which the slug flow regime is predicted by solving the 

conservation equation. This technique utilizes an Eulerian approach for solving the 1-D two-

fluid model and can capture the development of hydrodynamic instabilities and the growth 

and collapse of the slugs. 

In Woodburn and Issa [12] two-fluid model, it is assumed that phase pressure and 

phase pressure at the interface are equal [13]. The gas phase and liquid phase pressures are 

shown as Pg  and Pl, respectively. Moreover, they assumed P = Pg = Pl, and gas and liquid 

pressures are equal at the interface (P = Pgi = Pli). The Pgi and Pli are gas and liquid phase 

pressures at the interface, respectively. It means that the pressure of gas phase and the pres-

sure of liquid phase are assumed to be the same and the whole two-phase system is modeled 

with a single pressure: 

 g gi l liP P P P P     (1) 

Issa and Kempf [13] assumed that the gas phase and liquid phase pressures at the in-

terface are the same (i.e., Pgi = Pli) [12]. Furthermore, they considered that the liquid phase 

pressure in the vertical direction varies hydrostatically. They used the hydrostatic pressure 

correction term in their study [12].  
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 g gi liP P P P    (2) 

 l l l G ( )c( ) osP P hy y     (3) 

where P is the gas phase pressure and Pl(y) – the liquid phase pressure. Also, ρl, G, hl, and β 

are liquid phase density, gravitational acceleration constant, level of the liquid phase, and the 

pipe’s inclination, respectively. 

Other researchers used the single-pressure two-fluid model for numerical modeling 

of two-phase flows by applying the hydrostatic pressure correction term [12, 14-21]. 

Evje and Flatten [22] implemented the Roe scheme to a four-equation single-pres-

sure two-fluid model and showed that the second-order extension based on wave decomposi-

tion and flux-difference splitting gives improved results in comparison of the first-order 

scheme. They considered the gas phase is compressible and the liquid phase is incompressi-

ble. As well, they considered the following assumptions for pressure: 

 g lP P P   (4) 

 i gi liP P P   (5) 

where P is the phase pressure (in this model, the pressure of two phases are assumed equal) 

and Pi – the pressure at the interface. In their two-fluid model, the relationship between phase 

pressure and pressure at the interface of phases was stated by the hydrodynamic pressure cor-

rection term presented by Paillere et al. [23]. Other researchers used the single-pressure two- 

-fluid model with hydrodynamic pressure correct terms [20, 21, 24-26]. 

A two-pressure two-fluid model has a particular structure, and its analysis is more 

complicated than the analysis of a basic single-pressure two-fluid model. Moreover, a two- 

-pressure two-fluid model is always a hyperbolic one [6]. There are two two-pressure two-flu-

id models for isotherm flows [27]. 

The first model is described through four differential equations in which pressures in 

both phases are considered equal, while the second model is expressed through five differen-

tial equations in which the pressures in two phases are different [27]. Usually, two-fluid mod-

els containing four equations have complex eigenvalues. As a result, these equations are not 

well-posed. Thus, to solve these models numerically, the high artificial viscosity must be in-

serted into the models [6]. 

Ransom and Hicks [6] presented a compressible two-fluid model having five differ-

ential equations. They stated that for having a two-fluid model that is always hyperbolic, the 

assumption of pressure equality in two phases must change. In their model, Ransom and 

Hicks [6] did not use the pressure relaxation method. In their model, the pressure of phases 

varies over time. Saurel and Abgrall [28] proposed a two-pressure two-velocity two-phase 

model. In this model, which has seven equations, the pressure and velocity relaxations can be 

carried out following the hyperbolic time step. This model can be considered an expansion of 

Baer and Nunziato's [29] model. 

Fontalvo et al. [30] assess closure relations' effect in a 1-D two-fluid model on annu-

lar vertical flows. They discretized conservation equations by first-order, first-order upwind, 

and second-order schemes. They performed a mesh sensitivity analysis to show the ad-

vantages and disadvantages of the aforementioned schemes and investigated the effect of clo-

sure relations on well-posedness and physical representativeness. Best closures predictions 

showed an average error of 9% and 22% for pressure gradient and liquid holdup. They also 
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showed that, despite the vertical annular flow complexity, the model could predict wave for-

mation and propagation quite well [30]. 

Saraswat et al. [31] analyzed the linear stability of the RELAP5 two-fluid model 

used to simulate transient two-phase flow to investigate the ill-posedness of the RELAP5 

model for normal and accident situations in a water reactor. They introduced a new term 

called bubble collision to the two-fluid model to improve its results. It is showed that the addi-

tion of the bubble collision to RELAP5 makes the model unconditionally well-posed [31]. 

In numerical solution of two-phase flows, due to a deformable interface, the fluid 

properties vary discontinuously during passing through the interface. The selection of a proper 

that can predict the discontinuities during passing through the interface is critical. According 

to reviewing the literature, it is clear that, in numerical modeling of isothermal two-phase gas- 

-liquid flows, free pressure two-fluid models, single-pressure or two pressure have been used. 

Each of the two-fluid models has different criteria of well-posedness that directly influence 

the accuracy of the solution. However, comparing two-fluid models and the well-posedness 

criteria of two-fluid models and their effects on the numerical solution results have never been 

demonstrated. This is realized in the present work. 

Governing equations 

The main focus of this work is the two-fluid model. In this model, each phase is 

characterized by continuity and momentum equations, while the gas and liquid phases' inter-

action is expressed via particular closure relations. This model treats each phase as a distinct 

fluid with its governing equations. 

Moreover, dynamic interaction between phases is calculated by inter-phase forces 

that are appeared in the conservation equations by the source term. In this study, the flow is 

considered isothermal. 

According to the assumptions for the pressure term, the conservation and momen-

tum equations are presented for different forms of the two-fluid model as following: 

Single-pressure model 

The single-pressure model is a non-

conservative form of the two-fluid model pre-

sented by Evje and Flatten [22]. The single-

pressure model consists of four differential equa-

tions, including two mass equations and two 

momentum equations for each phase. In the sin-

gle-pressure model, gas and liquid phases are 

considered as compressible and incompressible, 

respectively. Equations of the single-pressure 

model are presented as follows. A typical side 

view of a two-phase flow pipe is shown in fig. 1. 

Mass equation of gas:  

 g g g g g(  ) (  ) 0R R u
t x
 

 
 

 
 (6a) 

 

Figure 1. Side view of the two-phase flow 

pipe; (a) initial condition and (b) one instant 
during the transient 
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Mass equation of liquid: 

 l l l l l( ) ( ) 0R R u
t x
 

 
 

 
 (6b) 

Momentum equation of gas: 

 
gi2

g g g g g g g gi g g g g gw i( ) ( ) [( ) ] Gsin
P

R u R u P P R R R F F
t x x x
   

  
       

   
 (6c) 

Momentum equation of liquid: 

 2 li
l l l l l l l li l l l l lw i( ) (  ) [( ) ] Gsin

P
R u R u P P R R R F F

t x x x
   

  
       

   
 (6d) 

where for kth phase (k = g is for gas phase and k = l is for liquid phase), ρk – the density of the 

kth phase, and Rk – the volume fraction of the kth phase, uk – is the velocity of kth phase, Pk – 

the pressure of kth phase, Pki – the pressure of the kth phase at the interface, β – the pipe's incli-

nation, and G – the gravitational acceleration. The friction force of each phase at the walls Fkw 

(w refers to the wall) and Fi is the friction force between phases at their interface. In fig. 1, D 

and hl are the pipe diameter and the height of the liquid phase, respectively. 

In our model, the gas and liquid phases pressures are the same (i.e., Pg = Pl = P) and 

the pressure of phases at the interface are equal (i.e., Pgi = Pli = Pi) Therefore, eqs. (6c) and 

(6d) are rewritten: 

 
g2

g g g g g g g i g g gw i( ) ( ) Gsin
R

R u R u R P P R F F
t x x
   

 
     

  
 (6e) 

 2 l
l l l l l l l i l l lw i( ) ( ) Gsin

R
R u R u R P P R F F

t x x
   

 
     

  
 (6f) 

In momentum equations, the term P – Pi is indicated as ΔP and called the pressure 

correction term, and the following relation is presented for its calculation [23, 32]: 

 
l g l g 2

g l
g l l g

     
 ( )

   
i

R R
P P P u u

R R

 

 

    


 (7) 

where 1.2   [22]. Unknowns in the single-pressure equation system are ρg, Rg, Rl, ug, ul, P 

and for closing equation system, additional equations are required.  

Two more relationships are required to complete the mass and momentum eqs.  

(6a)-(6d). The first relationship is derived from the geometric constraint where the whole pipe 

is filled by the gas and liquid phases [22], hence: 

 l g 1R R   (8) 

Moreover, appropriate thermodynamic sub-models must be specified. For phase k, 

the simplified linear thermodynamic relations can be assumed [22].  

 
0,

0, 2

k k
k k

k

P P

C
 


   (9) 
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where ρ0,k and P0,k are the given values for density and pressure, respectively. The Ck is the 

speed of sound in each phase and is considered [22]: 

 
2k
k

k

P
C







 (10) 

The assumption that Ck is constant, states that the flow is isentropic. Throughout this 

work, we use the following parameters for the liquid phase [22]: 

 
5 3 2 6 2

0,l 0,l l10 Pa  1000 andkg/m 10 m/sP C    

For the gas phase, we specify: 

 
2 5 2

0,g 0,g g0 0 and 10 m/sP C    

Two-pressure two-fluid model 

The two-pressure model is a non-conservative type of two-fluid model introduced by 

Ransom and Hicks [6]. Then, this model was improved by Saurel and Abgrall [28]. The two- 

-fluid model consists of five differential equations, including two equations for the continuity 

and two equations for the momentum, and one equation for the volume fraction's Advection. 

In the two-pressure model, both gas and liquid phases are considered as compressible. Equa-

tions of the isothermal two-pressure are presented as following. 

– Advection of volume fraction 

 
g g

i P g l( )
R R

u r P P
t x

 
  

 
 (11a) 

– Mass equation of gas 

  

 g g g g g( ) ( ) 0R R u
t x
 

 
 

 
 (11b) 

– Mass equation of liquid 

 l l l l l( ) ( ) 0R R u
t x
 

 
 

 
 (11c) 

– Momentum equation of gas 

 

g2
g g g g g g g g gi g

g g v g l gw i

( ) ( ) [( ) ]

–  G si )n (

P
R u R u R P P R

t x x x

R r u u F F

 

 

  
     

   

   

 (11d) 

– Momentum equation of liquid 

 

2 l
l l l l l l l l li l

l l v g l lw i

( ) ( ) [( )

–  Gsi )n

]

(

P
R u R u R P P R

t x x x

R r u u F F

 

 

  
     

   

   

 (11e) 
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In the two-pressure model, the liquid phase and gas phase pressures at the interface 

are considered as equal (i.e. Pgi = Pli = Pi). Therefore, eqs. (11d) and (11e) are rewritten: 

 
g2

g g g g g g g g i g g v g l gw i( ) ( )   s (G in )
R

R u R u R P P R r u u F F
t x x
   

 
       

  
 (11f) 

 2 l
l l l l l l l l i l l v g l lw i( ) ( )   s (G in )

R
R u R u R P P R r u u F F

t x x
   

 
       

  
 (11g) 

In momentum equations, the term P – Pi is called the pressure correction term, and 

the following relations are presented to calculate this term [28]: 

 
l g l g 2

i g l
g l l g

     
 ( )

   

R R
P P u u

R R

 

 

  


 (12) 

The unknown in two-pressure equations are ρg, ρl, Rg, Rl, ug, ul, Pg, and Pl. Further-

more, for closing the equation system, other relations are required. The first relation is a geo-

metric constraint that uses eq. (8). In addition to eq. (8), for closing the system, thermodynam-

ic sub-models are required that use eqs. (9) and (10).  

In where ui is the average interface velocity that is calculated as following [28]: 

 i

k k kk

k kk

R u
u

u












 (13) 

where rv is a velocity-relaxation parameter. If the value of rv is too high, phasic velocities of 

two phases become equal. In present work, we do not consider the velocity relaxation, and 

subsequently: 

 v 0r   (14) 

where rP is a pressure-relaxation parameter. For rP = 0, the phasic pressures of two phases are 

linearly independent and as P ,r   they become equal. 

For many two-phase flows, especially in a slug flow, the phases' pressure is not in-

dependent [27]. This dependence is addressed by the pressure-relaxation procedure [27]. Two 

pressure relaxation procedures are discussed as following [28]. 

Finite pressure-relaxation procedure 

The source term in eq. (11a) is significant, and we need to solve a five-equations 

system utilizing an appropriate numerical procedure [27]. Here, we utilize a fractional-step 

technique: Primarily, the hyperbolic part of the equations system (11a)-(11e) (that is, with rP 

= 0) is advanced one step, Δt. Next, the relaxation part is considered: 

 
g

P g l( )
R

r P P
t


 


 (15) 

 ( ) 0k kR
t






 (16) 

 ( ) 0k kR
t






 (17) 
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After solving the hyperbolic step for the initial condition, the system advances one 

more time step by an ode solver. Then, for the next time step, the hyperbolic solver is used, 

and so on. 

Instantaneous pressure-relaxation 

Usually, values of the pressure-relaxation parameter rP are unknown. Nevertheless, 

the presumption of the same pressure for two phases is widespread [27]. Such conditions can 

be reached by specifying a high value for rP. But, instead of solving the system of ordinary 

differential eqs. (15)-(17), direct solving of the problem is numerically more efficient. Evje 

and Flatten [22] presented eq. (18) for instantaneous pressure relaxation: 

 
g g l l

g(P) l(P)

1
R R 

 
   (18) 

Instead of densities denominator, the quadratic equation for calculating the pressure 

term is obtained through substituted eq. (9): 

 

2 2 2
l 0,l l l g 0,g g g 0,l 0,g

2 2 2
g l g g 0,l l l 0,g 0,g 0,l g 0,l 0,g g g

2
l 0,g 0,l l l 0,g 0,l

( ) ( )

( )

[ ( )]

–

– ( 0

( )

)

P P C R C R P P

C C R R C P R

C P R P P

   

       

 

      

    

  

 (19) 

By solving the previous quadratic equation and selecting its positive root, the other 

variables such as ρg, ρl, Rg, Rl, ug, and ul can be calculated and can be used as the hyperbolic's 

initial values at the next time step. Note that ρk,0, Pk,0, and Ck are reference values for density, 

pressure, and sound speed in every phase, and the amount of these variables is equal to refer-

ence values presented in section Single-pressure model for the single-pressure model. 

In the present study, the two-pressure model is presented as the two-pressure model 

1 and the two-pressure model 2. In the two-pressure model 1, the finite pressure-relaxation 

procedure is used. Also, in the two-pressure model 2, instantaneous pressure relaxation is 

used.  

Free pressure model 

Most of the two-fluid models are characterized by the non-conservativeness of their 

governing equations. Therefore, these two-fluid models cannot be solved by conventional 

numerical techniques established for single-phase conservative systems. Therefore, new tech-

niques are required for the numerical solution of these models. 

To overcome this problem, Watson [4] presented a conservative form of the two-

fluid model. The free pressure model consists of two differential equations: a total mass equa-

tion and a total momentum equation. In the presented free pressure model, the gas and liquid 

phases are assumed incompressible. 

Total mass equation: 

 l l g g l l l g g g( ) ( ) 0R R R u R u
t x
    










 (20) 
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Total momentum equation: 

 

2 2
l l g g l l g g l g l

gw lw
l g i

l g g l

1 1
( ) ( )G cos  

2 2

1 1
( )Gsin

u u u u h
t x

F F
F

R R R R

      

  

 
         

 
      

 

 

 

 (21) 

The unknowns in the free pressure equations system are Rg, Rl, ug, and ul. However, 

there are only two differential equations for this system. Hence, two additional algebraic 

equations are required. The first algebraic relation is a geometric constraint for two phases, 

and eq. (8) is used for them. In addition to the geometric constraint, another required: 

 l l g g( ) 0R u R u
x







 (22) 

According to eq. (22), one can conclude that this equation is only a function of time. 

This time function is represented by C(t) and considered as a function of inlet flow parame-

ters: 

 l l g g l l g g inlet( ) ( )Ru R u C t Ru R u     (23) 

where inlet is the inlet of the pipe. 

Hyperbolic analysis of the two-fluid model 

In the two-fluid model, the equations system can be mathematically classified via 

the characteristics analysis: that is, for the real characteristics, the equations are hyperbolic, 

and the system is well-posed. Conversely, the equations are elliptic for the complex character-

istics, and the initial value problem is ill-posed. 

In this section, the roots of the characteristic equation of the two-fluid model are 

presented. If this equation's roots are complex, then the initial value problem becomes ill-

posed that is led to creating the unbounded instabilities, and as a result, the solution will not 

convergent. If the characteristic equation's roots are real, then the problem becomes well-

posed and unbounded instabilities are eliminated [6]. 

Roots of the characteristic equation  

of the single-pressure model 

Evje and Flatten [22] presented eq. (24) by using analysis of density perturbations 

for the eigenvalues in which eqs. (25)-(28) are governed [22]. 

 (1,2) P (3,4), m uu C u v      (24) 

 
g l g l g l

P
g l l g

R u R u
u

R R

 

 





 (25) 

 
g l l l g g

g l l g
u

R u R u
u

R R

 

 





 (26) 
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2
g l l g g l l g g l

2
g l l g

 ( ) ( )

( )

P R R R R u u
v

R R

   

 

   



 (27) 
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 (28) 

Equation (27) shows that if ΔP is equal to zero, the eigenvalues are complex; thus, 

the system becomes ill-posed. Therefore, in eq. (7), we must have 1.   

Roots of the characteristic equation  

of the two-pressure model 

The eigenvalues are analytically obtained for the two-pressure model having five 

equations. These values are calculated by the following equation [27]: 

 i g g g g l l l l( )u u C u C u C u C       (29) 

According to eq. (29), it is found that all eigenvalues are real, except in the situation 

that the two phase’s speeds are equal. All eigenvalues are non-zero, and the system is strictly 

hyperbolic. A comprehensive discussion on eigenvalues of the five-equation model was pre-

sented in [27]. 

Roots of the characteristic equation  

of the free pressure model 

The roots of the characteristic equation of the free pressure model are presented [1]: 

 
g

1

( )

1

lu u




  



 (30) 

 
g

2

( )

1

lu u




  



 (31) 

In eqs. (30) and (31), Δ is presented:  

 
2 l

g l '
l l

 G cos  
(  ) (1 ) 0

A
u u

A

 
 




        (32) 

Finally: 

 
l g g l2 l

g l '
g l l

( )
( ) G cos  

R R A
u u

A

  


 

 
   (33) 

Roots of the presented characteristic equation are real, if 0.   

In fact, eq. (33) states Kelvin Helmholtz instability conditions. This equation shows 

that limit of stability in the free-pressure two-fluid models the same limit of Kelvin Helmholtz 

stability. The limit of well-posed of the single-pressure two-fluid model is similar to the limit 
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of the free pressure model [1]. In order to calculate the characteristic equation, the following 

equations are governed. 

 l g         (34) 

 
g l

l g

R

R





  (35) 

 
' l
l

l

d

d

A
A

h
  (36) 

According to the characteristic equation's roots presented for the free pressure model 

and the single-pressure model, these models are in the situation that phase velocity difference 

does not exceed a specified limit. If the velocity difference of the two phases exceeds the al-

lowed limit, the model becomes an ill-posed model, and a non-physical discontinuity is creat-

ed in the solution field. This phenomenon is considered as the weakness of the two models. In 

the two-pressure model, the roots of the characteristic equation are real for all values. There-

fore, the system has no hyperbolic condition.  

Numerical method for solving governing equations 

The governing equations of the three models discussed in section Governing equa-
tions can be categorized into two numerical formulations, and as a result, need different nu-

merical methods. The free pressure model is known as conservative systems defined [33]: 

 
Q F

S
t x

 
 

 
 (37) 

However, the single-pressure model and two-pressure model are non-conservative 

systems that can be expressed [33]: 

 kRQ F
H S

t x x

 
  

  
 (38) 

where Q is a vector of conservative variables, F and S vectors represent the fluxes and source 

terms, respectively, and are algebraic functions of Q, and H is the interfacial pressure vector. 

For the conservative system of eq. (37), the finite difference discretization results in 

the below expression: 

 1 Force Force
1/2 1/2( )  n n n n

i i i i i

t
Q Q F F t S

x


 


    


 (39) 

For the non-conservative system of eq. (38), the finite difference discretization is: 

 
1 Force Force

1/2 1/2( )  n n n n k
i i i i i

Rt
Q Q F F t H t S

x x


 

  
       

  
 (40) 

In eqs. (39) and (40), n and n+1 show old and new time steps, respectively. Also, i is 

the cell. In order to calculate the numerical flux term Force
1/2 ,n

iF  the force method is used. 
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Force numerical method 

Toro [33] suggested a simple deterministic first-order centered method (force), in 

which the inter-cell flux is the average of the Richtmyer and the Lax-Friedrichs fluxes. There-

fore, it is presented by: 

 Force LF RI
1/2 1/2 1/2

1
  (   )
2

n n n
i i iF F F     (41) 

where LF
1/2

n
iF  is the Lax Friedrichs numerical flux and 

RI

1/2

n

iF  is the Ritchmyer numerical flux. 

In the Lax Friedrichs method, the flux term is calculated [34]: 

 LF
1/2 1 1

1
  (   )   ( )
2 2

n n n n n
i i i i i

x
F F F Q Q

t
  


   


 (42) 

In the Ritchmyer method, the flux term is calculated as following [34]: 
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1/2 1/2( )n n
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 (44) 

Numerical flux in the ith cell is expressed as ( )n n
i iF F Q  and obtained based on the 

physical flux term.  

The term /kH R x   in single-pressure and the two-pressure equations is non-conser-

vative and must be appropriately substituted. Improperly substituting this term causes instabil-

ity in the solution [35]. For discretization of the non-conservative term   / ,kH R x   the follow-

ing equations are presented [35]: 
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x x
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 (45a) 

 l
l g

R BL
H HR R

x x
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

 
 (45b) 

The derivative terms /BG x   and /BL x   are discretized by using a centered 

scheme. 

 1 1
g l g l
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x x
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 1 1
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x x
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Where 
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 (47b) 

Calculation of time step 

In order to calculate a time step, firstly, Δx is considered as mesh size using the fol-

lowing equation, then, Δt (i.e., time step) is calculated [1]: 

 
max
n

x
t CFL




   (48) 

In this work, the value of Courant Friedrichs Levy Number is assumed 0.4 to 0.5. 

The max

n  is the maximum value of the wave velocity in the solution field at the time n. Max-

imum wave velocity for the two-fluid model is equal to the maximum value of the characteris-

tic equation of the governing equation in the solution field: 

  max max max     1, ,   1,n k
i

i k
for i M k Neq      (49) 

where Neq  is the number of system equations and 
k
i is wave velocity in each computational 

mesh. 

Numerical modeling 

In this section, the water faucet case is used to compare the free-pressure two-fluid 

model, the single-pressure two-fluid model, and the two-pressure two-fluid model in which 

the pattern of annular two-phase flow is governed. 

This system includes a vertical pipe with a height 

of 12 m and a diameter of 1 m. Also, at the initial 

time, water velocity, air velocity, and volume frac-

tion of water are 10, 0, and 0.8 m/s, respectively. 

The pressure at the pipe outlet is 100000 Pa. Inlet 

conditions are equivalent to the initial conditions. 

Furthermore, the fully developed boundary condi-

tions are governed at the outlet of the pipe [36]. 

Figure 2 shows a schematic of the water faucet 

case. 

In this section, the transient analytical solu-

tion of the water faucet case is presented [1]. 
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Figure 2. Schematic of water faucet case;  
(a) initial, (b) transient, and (c) steady-state 



Naghibi, 
 

where 
inlet
l R  is liquid phase volume fraction at the inlet of the pipe that is equal to 0.8. The 

term 
inlet
l u  is the liquid phase velocity at the inlet of the pipe that is equal to 10 m/s. Variable 

t is time, G – is the gravitational acceleration constant and 
inlet x  – the position at the inlet of 

the pipe, which is equal to zero. The reference solution was obtained from Evje and Flatten 

[24]. 

First, independent computing mesh solutions are presented for the gas phase volume 

fraction profile and liquid phase velocity profile for various two-fluid models. For all two-flu-

id models, computation time is 0.6 seconds, and the Courant Friedrichs Levy number is as-

sumed to be 0.5. 

Figures 3(a) and 3(b) show the gas volume fraction profile and the liquid velocity 

profile for the two-fluid free-pressure model, respectively. 

  

Figure 3(a). Independent solutions of computing 
mesh for gas-phase volume fraction profile, free 
pressure model 

Figure 3(b). Independent solutions of 
computing mesh for liquid phase velocity 
profile, free pressure model 

The results obtained from numerical modeling indicate non-physical instabilities. 

These instabilities will exponentially grow by increasing the number of meshes. These insta-

bilities are due to the ill-posed of free pressure model in the given case. In this case, the pipe 

is vertical, therefore, cosβ in eq. (33) is zero. 

According to eq. (33), when the two phases' velocities are equal, the free pressure 

model is well-posed. However, in the water faucet case, the velocities of the two phases are 

different. Thus, in the water faucet case, the mesh independent results cannot be obtained by 

using the free-pressure model. 

Figures 4(a) and 4(b) show the gas phase volume fraction profile and the liquid 

phase velocity profile for the single-pressure two-fluid model, respectively. Figures 5(a) and 

5(b) show the gas phase's volume fraction profile and the liquid phase's velocity profile for 

the two-pressure two-fluid model 2, respectively. 

The free-pressure model is ill-posed in the desired physics. Therefore, the free-

pressure model is neglected during the comparison process of the two-fluid model. The num-

ber of computational meshes is assumed to equal 5000. Although the criteria of well-

posedness for the free pressure model are similar to that for the single-pressure model, un-

bounded instabilities have not been observed in the single-pressure model. 



Naghibi, 
 

 

Figure 4(a). Independent solutions of computing 
mesh of the gas phase volume fraction profile, 

single-pressure model 

Figure 4(b). Independent solutions of 
computing mesh of the liquid phase velocity 

profile, single-pressure model 

The single-pressure two-fluid model can properly predict the behavior of the two-

phase flows that are weakly coupled together due to having two continuity equations and two 

momentum equations. Note that the wave propagation in each phase takes place at different 

velocities. This was illustrated correctly in the water faucet case, and no numerical jumps 

were observed.  

  

Figure 5(a). Independent solutions of computing 
mesh of the gas phase volume fraction profile,  
two-pressure model 2 

Figure 5(b). Independent solutions of computing 
mesh of the liquid phase velocity profile,  
two-pressure model 2 

In the single-pressure model, if ΔP in eq. (27) is zero, then the roots of the character-

istic equation (i.e. λ3 and λ4) are complex; as a result, the single-pressure model is ill-posed. In 

this situation, obtaining mesh independent results is impossible, and as the number of meshes 

increases, non-physical instabilities grow exponentially. In this condition, to deal with the 

single-pressure model's ill-posed problem, the two-pressure model 2 is proposed. According 
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to eq. (29), the two-pressure model 2 has the real and unconditional roots of the characteristic 

equation, and it is well-posed in all conditions. 
In the free-pressure two-fluid model, the liquid and gas phases' densities are con-

stant, but in the single-pressure two-fluid model, the liquid phase's density is constant. The 

density of the gas phase is variable. Since changes in the density of the gas phase are low, 

they can be neglected. Thus, the free-pressure model and the single-pressure model are physi-

cally in the same conditions, and the difference in the obtained results is due to the model's 

accuracy. 

The free-pressure model in the water faucet case is ill-posed. Therefore, the free-

pressure model is neglected for comparison of the two-fluid model. 

The computational mesh number is assumed 5000 to compare the single-pressure, 

the two-pressure 1, and the two-pressure 2 of two-fluid models. 

In this section, a comparison among the single-pressure model, the two-pressure 

model 1, and the two-pressure model 2 are presented. The results from the comparison of 

models are indicated in figs. 6-9 for the gas phase volume fraction profile, the liquid phase ve-

locity profile, the gas phase velocity profile, and liquid phase volume fraction profile, respec-

tively. 

The number of the computational mesh is 5000. Also, computation time is 0.6 sec-

onds, and the value of Courant Friedrichs Levy number is assumed 0.4. 

In tab. 1, the values selected for the pres-

sure-relaxation parameter in the two-fluid model 

1 are presented. 

The results of the gas phase volume fraction 

profile, liquid phase velocity profile, gas-phase 

velocity profile, and liquid phase volume fraction 

profile are shown in figs. 6-9, respectively. As rP 

increases, results for the two-pressure model 1 

and the two-pressure model 2 are approached to-

gether, and transferring the two-pressure model 1 

into the two-pressure model 2 has occurred uni-

formly.  

Results of the two-pressure model 1 are 

highly dependent on rP. The best choice, results 

for the two-pressure model 1 and the two-

pressure model 2 are approached together. Selecting amount rP is difficult because there are 

no criteria for selecting it. 

The comparison of models are shown in figs. 6-9 for the gas phase volume fraction 

profile, liquid phase velocity profile, gas-phase velocity profile, and liquid phase volume frac-

tion profile, respectively, it was found that the two-pressure 1 and the two-pressure 2 have the 

nature of numerical diffusion than the single-pressure model. This numerical diffusion was 

observed in the gas phase volume fraction profile, liquid phase velocity profile, gas-phase ve-

locity profile, and liquid phase volume fraction profile. 

In this section, the comparison between the single-pressure model and the two-

pressure model is presented. In fig. 10, the comparison between two-pressure model 1 and 

two-pressure model 2 is performed. In fig. 11, the comparison between the single-pressure 

model and the two-pressure model 2 for pressure profile is performed. 

Table 1. Values of pressure-relaxation 

parameter 

Value Pressure-relaxation parameter 

0.001 rP1 

0.0001  rP2 

0.00001  rP3 

0.000001  rP4 

0.0000001  rP5 

0  rP6 
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Figure 6. Comparison of various two-fluid models 
for the volume fraction profile of gas 

Figure 7. Comparison of various two-fluid 
models for the velocity profile of liquid phase 

  

Figure 8. Comparison of various two-fluid models 
for velocity profile of gas phase 

Figure 9. Comparison of various two-fluid 
models for the volume fraction profile of 

liquid-phase 

The number of computation mesh is 5000. Also, computation time is 0.6 seconds, 

and the value of Courant Friedrichs Levy number is assumed 0.4. 

Figure 11 indicates the comparison between the single-pressure model and the two-

pressure model 2. Results show that similar to other flow variables (gas phase volume fraction 

and velocity profiles, liquid phase velocity, and volume fraction profile), the single-pressure 

model's pressure change profiles are predicted with higher accuracy than the two-pressure 

model 2. 

The finite pressure relaxation method is used in two-pressure model 1, and gas and 

liquid phase pressures are not equal. Instantaneous pressure relaxation method is used in two-

pressure model 2, and gas-phase pressure and liquid phase pressure are assumed the same.  
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Figure 10 shows that the pressure changes profile in the gas phase in the two-phase 

model 1 is predicted to be equal to that in the two-pressure model 2. 

  

Figure 10. Comparison between the two-pressure 
model 1 and the two-pressure model 2 for  
pressure profile 

Figure 11. Comparison between the single-
pressure model and the two-pressure model 2 
for pressure profile 

The volume fraction profile of gas and liquid phases is shown in figs. 6 and 9, re-

spectively, as the volume fraction of gas increases, the volume fraction of liquid decreases. 

According to eq. (8), there is a direct relationship between the gas phase volume fraction and 

the liquid phase volume fraction. Thus, based on Bernoulli’s equation, as the volume fraction 

of the gas-phase increases, the liquid phase pressure loss occurs, and the volume fraction of 

the gas phase decreases. The liquid phase pressure increases. 

Therefore, according to the presented results of the volume fraction profiles of gas 

and liquid phases in figs. 6 and 9, respectively, in the inlet of pipe, the liquid phase's cross-

section is larger than the gas phase’s cross-section. Therefore, according to Bernoulli's equa-

tions, the liquid phase pressure must be higher than the gas phase pressure. It is shown in fig. 

10. The liquid phase pressure decreases as the liquid phase volume fraction decreases due to 

Bernoulli’s equations. 
In the two-pressure model 1, the gas and liquid phases' pressure is not assumed the 

same. The assumption of inequality of phase’s pressure is exact, and it corresponds to the 

flow's actual physics.  

Flow evolution 

The computations were performed for multiple time-step sizes to show the conver-

gence of various two-fluid models in the time domain. For particular boundary and initial 

conditions of the simulation case, after 0.85 seconds solution reached a theoretical steady 

state. Then, the computations were performed for more than 1.0 seconds afterward to check 

the steady state convergence [1].  

For comparison of the presented two-fluid models, the gas volume fraction profile 

and the liquid phase's velocity profile are presented in figs. 12 and 13, respectively. Various 

two-fluid models are compared in computational times 0.25, 0.75, and 1.0 seconds. 
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Figure 12. Time evolution of the volume fraction 
profile of gas-phase 

Figure 13. Time evolution of the velocity 
profile of liquid phase 

Numerical results are presented for the gas phase’s volume fraction profile, and the 

liquid velocity phase profile is presented in figs. 12 and 13, respectively. It can be seen that, at 

different computational times, the single-pressure model predicts more accurately the gas 

phase volume fraction and velocity profile of the liquid phase than the exact solution. 

In the steady-state, the two-pressure model produces numerical diffusion in the solu-

tion field, leading to less precision of two-phase variables than single-pressure in numerical 

modeling. 

Conclusions 

The free-pressure two-fluid model is a conservative medal. It has no complexity re-

lated to the discretization of the non-conservative term existence in the single-pressure and the 

two-pressure model. A free-pressure model can exactly predict discontinuities in the solution 

field when the initial conditions satisfy the Kelvin Helmholtz instability condition. The free-

pressure model has two crucial weaknesses: neglecting the compressibility of the gas phase 

and lack of predicting the phase’s pressure profile changes in the output of the model.  

A single-pressure two-fluid model, due to having two continuity equations and two 

equations of momentum, can properly predict the behavior of flows that are weakly coupled 

together in two phases so that propagation wave is performed in each phase at different veloc-

ities. It was demonstrated in the water faucet case, and no other jump in the flow variables 

was observed. 

The two-pressure two-fluid model is well-posed unconditionally. The two-pressure 

models have more numerical diffusion than the single-pressure models. Also, high numerical 

diffusion was led to better mismatches of the solutions by analyzing the problem. 

The two-pressure model 1 is strongly dependent on the value of rP and in the best 

choice of rP, the two-phase model 1. The solutions for predicting the flow variables (gas and 

liquid phases volume fraction profile, gas and liquid phases velocity profile) are approximate-

ly equal to the two-pressure model 2. 

One of the difficulties with the two-factor model 1 is the selection of the value of rP 

because there is no specific criterion for selecting it. The assumption of the inequality of pres-

sure of the phases is exact, and it is following the actual physics of the flow. Therefore, the 
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predicted pressure changes profile in the two-pressure model 1 is more consistent with actual 

physics. 
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