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Based on Hirota bilinear formulation, the lump solutions to dimensionally reduced 
generalized variable coefficient B-type Kadomtsev-Petviashvili equation are ob-
tained. The solution process is figured out and the solution properties are illustrat-
ed graphically. The present method can be extended to other non-linear equations. 
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Introduction

Non-linear evolution equations can model various non-linear phenomena, and have 
been extremely studied in plasma physics, non-linear optics, fluid mechanics, and thermody-
namics [1-5]. So far many techniques for constructing solutions have been proposed, such as 
Painleve test [6], Darboux transformation [7], Hirota method [8], Backlund transformation [9], 
and Bell polynomials [10]. Through these methods, many kinds of solutions are presented. 
Solitons have been at the forefront of integrable systems for many years, other kinds of solu-
tions also attract much attention. As a kind of rational function solutions, lump solutions, which 
localize in all directions in the space, have many applications to non-linear PDE. Recently, a hot 
topic is the Kadomtsev-Petviashvili (KP)-type equations [11-14], such as the (2+1)-D B-type 
KP equation, the (3+1)-D B-type KP equation, which can be transformed into a generalized bi-
linear equation. Multi-component and higher-order extensions of lump solutions exhibit diverse 
soliton phenomena, particularly the (3+1)-D case always leads to multiple wave solutions and 
lump solutions. The aim of this study is to use the Hirota bilinear forms to generate the gener-
alized (3+1)-D variable coefficient B-type KP equation [15-17]:

( ) ( ) ( )( ) ( ) ( )( ) 0BKP xxxy x y y x y z t xx zzP u a t u a t u u u u u b t u uρ= + + + + + + = (1)

where u is the wave amplitude function of the scaled space co-ordinates x, y, z, and retarded 
time co-ordinate t, a(t) and b(t) are the real function of t and ρ is a real non-zero constant. 
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Hirota bilinear form and lump solutions

It is clear that Hirota bilinear operator Dx is just the special case of the generalized 
bilinear operator [12-15]. Substituting u = (6/ρ)(lnf)x into eq. (1) and simplifying the equation, 
we obtain the Hirota bilinear form:
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where f is a function of x, y, z, and t, the bilinear differential operators D3,x, D3,t, D3,y, D3,z, D2
3,x, 

and D2
3,z are the Hirota bilinear operators when p = 3. 

In this study, we construct positive quadraic function solution the dimensionally re-
duced Hirota bilinear equation for the case z = x, and a quadratic function is supposed:
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where ai(1 ≤ i ≤ 9) are all real parameters which we need to determine later.
The dimensionally reduced Hirota bilinear equation in (2+1)-D with z = x reads:
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Through the link between f and u, substituting eq. (3) into eq. (4), we obtain:
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which needs to satisfy a determinant condition:
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A class of positive quadratic function solutions to eq. (4):
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therefore, we obtain:

1 512( )a g a h
u

fρ
+

= (8)

where the functions g, h are given:
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The solution involves six parameters a1, a2, a4, a5, a6, and a8. All six involved param-
eters are arbitrary and the rest are demanded to satisfy the conditions eq. (6). The solutions 
defined by eq. (6) are analytic and only if the parameter a9 ≻ 0. It is easy to observe that at any 
given time, t, there are various possibilities to take appropriate parameters to obtain lump solu-
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Figure 1. Profiles with a1 = 1, a2 = 2, a4 = 0, a5 = 1, a6 = –1, a8 = 0, when t = –15, 0, 15;  
(a)-(c) 3-D plots and (d)-(f) contour plots 
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Figure 2. Profile of the solution 3-D plot together; (a) with the time t = –15, 0, 15 (a) and the contour 
plot about the moving path described by the straight line (b)
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tions. We choose a set of parameters to obtain a lump solution and use the 3-D plots and contour 
plots to show the properties as shown in figs. 1 and 2. 

Conclusion

In this paper, via the Bell polynomials and Hirota method, we have derived the Hi-
rota bilinear formulation and then by searching for positive quadratic function solutions, lump 
solutions to the dimensionally reduced equations are presented with p = 3.We obtain different 
lump solutions, and the result provides some important information on the relevant fields in 
non-linear science. Furthermore, we have performed the procedures on a generalized form of 
eq. (1). Many kinds of interaction solutions can be constructed.
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